Microstructure and Piezoelectric Properties of Lead Zirconate Titanate Nanocomposites Reinforced with In-Situ Formed ZrO2 Nanoparticles

Lead zirconate titanate (PZT)-based ceramics are used in numerous advanced applications, including sensors, displays, actuators, resonators, chips; however, the poor mechanical characteristics of these materials severely limits their utility in composite materials. To address this issue, we herein fabricate transgranular type PZT ceramic nanocomposites by a novel method. Thermodynamically metastable single perovskite-type Pb0.99(Zr0.52+xTi0.48)0.98Nb0.02O3+1.96x powders are prepared from a citrate precursor before both monoclinic and tetragonal ZrO2 nanoparticles ranging from 20 to 80 nm are precipitated in situ at a sintering temperature of 1260 °C. The effects of ZrO2 content on the microstructure, dielectric, and piezoelectric properties are investigated and the mechanism, by which ZrO2 toughened PZT is analyzed in detail. The ZrO2 nanoparticles underwent a tetragonal to monoclinic phase transition upon cooling. The fracture mode changed from intergranular to transgranular with increasing ZrO2 content. The incorporation of ZrO2 nanoparticles improved the mechanical and piezoelectric properties. The optimized piezoelectric properties (εT33/ε0 = 1398, tan δ = 0.024 d33 = 354 pC N−1, kp = 0.66 Qm = 78) are obtained when x = 0.02. Tc initially increased and subsequently decreased with increasing ZrO2 content. The highest Tc = (387 °C) and lowest εT33/ε0 was obtained at x = 0.01.

[1]  M. Sharifi,et al.  Optoelectronic Memory Capacitor Based on Manipulation of Ferroelectric Properties. , 2021, ACS applied materials & interfaces.

[2]  J. Malmström,et al.  The intrinsic piezoelectric properties of materials – a review with a focus on biological materials , 2021, RSC advances.

[3]  R. Zuo,et al.  Middle-low temperature sintering and piezoelectric properties of CuO and Bi2O3 doped PMS-PZT based ceramics for ultrasonic motors , 2021, Ceramics International.

[4]  Quan Wang,et al.  Piezoelectric properties and microstructure of ceramicrete-based piezoelectric composites , 2021 .

[5]  W. Cao,et al.  Dielectric, elastic and piezoelectric properties of single domain Pb(Zn1/3Nb2/3)O3–6.5%PbTiO3 single crystal with 3m symmetry measured using one sample , 2021 .

[6]  Jianguo Zhu,et al.  Origin of high piezoelectricity in low-temperature sintering PZT-based relaxor ferroelectric ceramics , 2020 .

[7]  Jian Hua Li Characterization of ZrO2/PZT Nanocomposites Ceramics Prepared by the Citrate Precursor Route , 2016 .

[8]  H. Abdizadeh,et al.  Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO , 2009 .

[9]  Jiang Chang,et al.  Preparation and properties of β-CaSiO3/ZrO2 (3Y) nanocomposites , 2008 .

[10]  M. Cao,et al.  Mechanical reinforcement and piezoelectric properties of nanocomposites embedded with ZnO nanowhiskers , 2008 .

[11]  Patrick M. Kelly,et al.  Transformation Toughening in Zirconia‐Containing Ceramics , 2004 .

[12]  Li Lu,et al.  Effects of complex additives on toughness and electrical properties of PZT ceramics , 2004 .

[13]  A. Ganguli,et al.  Dielectric properties of lead zirconium titanates with nanometer size grains synthesized by the citrate precursor route , 2003 .

[14]  C. Kaya,et al.  Zirconia-toughened alumina ceramics of helical spring shape with improved properties from extruded sol-derived pastes , 2003 .

[15]  R. Chen,et al.  Mechanical properties of Al2O3/ZrO2 composites , 2002 .

[16]  H. Awaji,et al.  Mechanisms of toughening and strengthening in ceramic-based nanocomposites , 2002 .

[17]  X. Tan,et al.  In situ transmission electron microscopy observations of electric-field-induced domain switching and microcracking in ferroelectric ceramics , 2001 .

[18]  Ming-Hong Lin,et al.  Ferroelectric domains in pressureless-sintered barium titanate , 2000 .

[19]  F. Fang,et al.  Crack tip 90° domain switching in tetragonal lanthanum-modified lead zirconate titanate under an electric field , 1999 .

[20]  H. Hwang,et al.  PZT nanocomposites reinforced by small amount of oxides , 1999 .

[21]  R. Brook,et al.  Processing and Mechanical Behavior of Al2O3/ZrO2 Nanocomposites , 1998 .

[22]  Martin Sternitzke,et al.  Structural ceramic nanocomposites , 1997 .

[23]  K. Niihara,et al.  Fabrication and mechanical properties of fine-tungsten-dispersed alumina-based composites , 1997 .

[24]  K. Niihara,et al.  Low‐Temperature Sintering and High‐Strength Pb(Zr,Ti)O3‐Matrix Composites Incorporating Silver Particles , 1997 .

[25]  M. Kosec,et al.  Mechanical and electric properties of PZT-ZrO2 composites , 1992 .

[26]  K. Niihara New Design Concept of Structural Ceramics , 1991 .

[27]  K. Okazaki,et al.  Electrical and mechanical properties of SiC whisker reinforced PZT ceramics , 1985 .

[28]  M. Kosec,et al.  Influence of zirconia addition on the microstructure of K0.5Na0.5NbO3 ceramics , 2008 .

[29]  A. Bianco,et al.  Zirconium titanate: from polymeric precursors to bulk ceramics , 1998 .

[30]  K. Niihara,et al.  Microstructure and mechanical behaviour of 3Y-TZP/Mo nanocomposites possessing a novel interpenetrated intragranular microstructure , 1996, Journal of Materials Science.

[31]  Minoru Takahashi,et al.  Mechanical and Electromechanical Properties of Monoclinic ZrO2 Fiber/PZT Composites , 1994 .

[32]  T. Yamamoto Optimum preparation methods for piezoelectric ceramics and their evaluation , 1992 .

[33]  R. Bradt,et al.  Grain Growth in Sintered ZnO and ZnO-Bi2O3 Ceramics , 1990 .

[34]  V. Isupov,et al.  Relaxation polarization of PbMg 1/3Nb2/3O3(PMN)-A ferroelectric with a diffused phase transition , 1973 .

[35]  W. J. Merz Piezoelectric Ceramics , 1972, Nature.