Automatically Approximating 3D Points with Co-Axisal Objects
暂无分享,去创建一个
Sergey Bereg | Chenglei Yang | Xiangxu Meng | Binhai Zhu | Changhe Tu | Russell Tempero | B. Zhu | Xiangxu Meng | Chenglei Yang | S. Bereg | Changhe Tu | Russell Tempero
[1] Sariel Har-Peled,et al. Efficiently approximating the minimum-volume bounding box of a point set in three dimensions , 1999, SODA '99.
[2] Binhai Zhu. Approximating 3D Points with Cylindrical Segments , 2002, COCOON.
[3] Franco P. Preparata,et al. Sequencing-by-hybridization revisited: the analog-spectrum proposal , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[4] Binhai Zhu,et al. Approximating Convex Polyhedra with Axis-Parallel Boxes , 1997, Int. J. Comput. Geom. Appl..
[5] G. Jacobs,et al. Neural Mapping of Direction and Frequency in the Cricket Cercal Sensory System , 1999, The Journal of Neuroscience.
[6] Timothy M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions , 1996, Discret. Comput. Geom..
[7] R. K. Shyamasundar,et al. Introduction to algorithms , 1996 .
[8] F. Theunissen,et al. Extraction of Sensory Parameters from a Neural Map by Primary Sensory Interneurons , 2000, The Journal of Neuroscience.
[9] Timothy M. Chan. Approximating the Diameter, Width, Smallest Enclosing Cylinder, and Minimum-Width Annulus , 2002, Int. J. Comput. Geom. Appl..
[10] Claire Mathieu,et al. Verifying partial orders , 1989, STOC '89.
[11] Gershon Elber,et al. Efficient continuous collision detection for bounding boxes under rational motion , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..
[12] Marco Attene,et al. Hierarchical mesh segmentation based on fitting primitives , 2006, The Visual Computer.
[13] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[14] Sergey Bereg,et al. Cylindrical hierarchy for deforming necklaces , 2004, Int. J. Comput. Geom. Appl..
[15] Subhash Suri,et al. Analysis of a bounding box heuristic for object intersection , 1999, SODA '99.
[16] Micha Sharir,et al. Line Transversals of Balls and Smallest Enclosing Cylinders in Three Dimensions , 1997, SODA '97.
[17] A. Björklund,et al. Transplantation of embryonic ventral forebrain neurons to the neocortex of rats with lesions of nucleus basalis magnocellularis—I. Biochemical and anatomical observations , 1985, Neuroscience.
[18] Marek Teichmann,et al. Smallest enclosing cylinders , 1996, SCG '96.
[19] Leif Kobbelt,et al. Structure Recovery via Hybrid Variational Surface Approximation , 2005, Comput. Graph. Forum.
[20] Binhai Zhu,et al. Cylindrical Approximation of a Neuron from Reconstructed Polyhedron , 2004, ICCSA.
[21] F. Theunissen,et al. Functional organization of a neural map in the cricket cercal sensory system , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[22] Ronald L. Rivest,et al. Introduction to Algorithms, Second Edition , 2001 .
[23] Timothy M. Chan. Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus , 2000, SCG '00.
[24] Ralph R. Martin,et al. Reverse engineering of geometric models - an introduction , 1997, Comput. Aided Des..