Segmenting images using localized histograms and region merging

A working system for segmenting images of complex scenes is presented. The system integrates techniques that have evolved out of many years of research in low-level image segmentation at the University of Massachusetts and elsewhere. This paper documents the result of this historical evolution. Segmentations produced by the system are used extensively in related image interpretation research.The system first produces segmentations based upon an analysis of spatially localized feature histograms. These initial segmentations are then simplified using a region merging algorithm. Parameter selection for the local histogram segmentation algorithm is facilitated by mapping the multidimensional parameter space to a one-dimensional parameter which regulates region fragmentation. An extension of this algorithm to multiple features is also presented. Experience with roughly 100 images from different domains has shown the system to be robust and effective. Samples of these results are included.

[1]  M L Mendelsohn,et al.  THE ANALYSIS OF CELL IMAGES * , 1966, Annals of the New York Academy of Sciences.

[2]  Oscar Firschein,et al.  Describing and abstracting pictorial structures , 1971, Pattern Recognit..

[3]  Claude L. Fennema,et al.  Scene Analysis Using Regions , 1970, Artif. Intell..

[4]  C. K. Chow,et al.  Boundary Detection of Radiographic Images by a Threshold Method , 1971, IFIP Congress.

[5]  Jerome A. Feldman,et al.  Decision Theory and Artificial Intelligence: I. A Semantics-Based Region Analyzer , 1974, Artif. Intell..

[6]  E. Riseman,et al.  Region Growing in Textured Outdoor Scenes. , 1975 .

[7]  Ronald Bert Ohlander,et al.  Analysis of natural scenes. , 1975 .

[8]  Michael Thompson,et al.  Frontiers of Pattern Recognition , 1975 .

[9]  Eugene C. Freuder Affinity: A relative approach to region finding , 1976 .

[10]  Azriel Rosenfeld,et al.  Scene Labeling by Relaxation Operations , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  Steven W. Zucker,et al.  Region growing: Childhood and adolescence* , 1976 .

[12]  Yoram Yakimovsky,et al.  Boundary and Object Detection in Real World Images , 1974, JACM.

[13]  Charles R. Dyer,et al.  Experiments on Picture Representation Using Regular Decomposition , 1976 .

[14]  S. Zucker Toward a model of texture , 1976 .

[15]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[16]  Theodosios Pavlidis,et al.  Structural pattern recognition , 1977 .

[17]  Harry G. Barrow,et al.  Experiments in Interpretation-Guided Segmentation , 1977, Artificial Intelligence.

[18]  Keith Price,et al.  Picture Segmentation Using a Recursive Region Splitting Method , 1998 .

[19]  Allen Klinger,et al.  Data Structures and Pattern Recognition , 1978 .

[20]  Azriel Rosenfeld,et al.  Iterative methods in image analysis , 1978, Pattern Recognit..

[21]  G.B. Coleman,et al.  Image segmentation by clustering , 1979, Proceedings of the IEEE.

[22]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[23]  Patrick C. Chen,et al.  Segmentation by texture using a co-occurrence matrix and a split-and-merge algorithm☆ , 1979 .

[24]  Paul Alexander Nagin Studies in image segmentation algorithms based on histogram clustering and relaxation , 1979 .

[25]  Makoto Nagao,et al.  A Structural Analysis of Complex Aerial Photographs , 1980, Advanced Applications in Pattern Recognition.

[26]  T. Kanade,et al.  Color information for region segmentation , 1980 .

[27]  R. Haralick,et al.  A facet model for image data , 1981 .

[28]  Steven L. Tanimoto,et al.  Segmentation of pictures into regions with a tile-by-tile method , 1982, Pattern Recognit..

[29]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[30]  Allen R. Hanson,et al.  Studies in Global and Local Histogram-Guided Relaxation Algorithms , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Olivier D. Faugeras,et al.  Segmentation of Images Having Unimodal Distributions , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  R. Kohler Integrating non-semantic knowledge into image segmentation processes , 1983 .

[33]  H. R. Keshavan,et al.  An optimal multiple threshold scheme for image segmentation , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[34]  Keith Price Image Segmentation: A Comment on ``Studies in Global and Local Histogram-Guided Relaxation Algorithms'' , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Josef Kittler,et al.  On threshold selection using clustering criteria , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[36]  Linda G. Shapiro,et al.  Image Segmentation Techniques , 1984, Other Conferences.

[37]  Martin D. Levine,et al.  Dynamic Measurement of Computer Generated Image Segmentations , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Chin-Hwa Lee Recursive region splitting at hierarchical scope views , 1986, Comput. Vis. Graph. Image Process..

[39]  L. Kitchen,et al.  Identification of Human Faces Using Data-Driven Segmentation, Rule-based , 1986 .

[40]  Terry Edward Waymouth Using object descriptions in a schema network for machine vision , 1986 .

[41]  Allen R. Hanson,et al.  A Goal-Directed Intermediate Level Executive for Image Interpretation , 1987, IJCAI.

[42]  Bir Bhanu,et al.  Segmentation of natural scenes , 1987, Pattern Recognit..

[43]  G. Reynolds,et al.  A Method for Initial Hypothesis Formation in Image Understanding , 1987 .

[44]  Bruce A. Draper,et al.  The schema system , 1988, International Journal of Computer Vision.