Asymptotic behavior of the central path for a special class of degenerate SDP problems
暂无分享,去创建一个
João X. da Cruz Neto | Orizon Pereira Ferreira | Renato D. C. Monteiro | O. P. Ferreira | R. Monteiro | J. C. Neto
[1] Etienne de Klerk,et al. On the Convergence of the Central Path in Semidefinite Optimization , 2002, SIAM J. Optim..
[2] Renato D. C. Monteiro,et al. Convergence and Boundary Behavior of the Projective Scaling Trajectories for Linear Programming , 1991, Math. Oper. Res..
[3] L. McLinden. An analogue of Moreau's proximation theorem, with application to the nonlinear complementarity problem. , 1980 .
[4] Michael J. Todd,et al. Path-Following Methods , 2000 .
[5] Josef Stoer,et al. Analysis of infeasible-interior-point paths arising with semidefinite linear complementarity problems , 2004, Math. Program..
[6] Shinji Hara,et al. Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..
[7] Renato D. C. Monteiro,et al. General Interior-Point Maps and Existence of Weighted Paths for Nonlinear Semidefinite Complementarity Problems , 2000, Math. Oper. Res..
[8] D. Bayer,et al. The Non-Linear Geometry of Linear Pro-gramming I: A?ne and projective scaling trajectories , 1989 .
[9] Shinji Mizuno,et al. Limiting Behavior of Trajectories Generated by a Continuation Method for Monotone Complementarity Problems , 1990, Math. Oper. Res..
[10] Etienne de Klerk,et al. Limiting behavior of the central path in semidefinite optimization , 2005, Optim. Methods Softw..
[11] Renato D. C. Monteiro,et al. Limiting behavior of the Alizadeh–Haeberly–Overton weighted paths in semidefinite programming , 2007, Optim. Methods Softw..
[12] Margaréta Halická,et al. Two simple proofs for analyticity of the central path in linear programming , 2001, Oper. Res. Lett..
[13] Martin Wechs,et al. The analyticity of interior-point-paths at strictly complementary solutions of linear programs , 1998 .
[14] P. Boggs,et al. On the convergence behavior of trajectories for linear programming , 1988 .
[15] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[16] Renato D. C. Monteiro,et al. Error Bounds and Limiting Behavior of Weighted Paths Associated with the SDP Map X1/2SX1/2 , 2005, SIAM J. Optim..
[17] Nimrod Megiddo,et al. A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems , 1991, Lecture Notes in Computer Science.
[18] Renato D. C. Monteiro,et al. On the Existence and Convergence of the Central Path for Convex Programming and Some Duality Results , 1998, Comput. Optim. Appl..
[19] Renato D. C. Monteiro,et al. On Two Interior-Point Mappings for Nonlinear Semidefinite Complementarity Problems , 1998, Math. Oper. Res..
[20] S. Itoh,et al. Variational inequalities and complementarity problems , 1978 .
[21] C. Roos,et al. Infeasible Start Semidefinite Programming Algorithms Via Self-Dual Embeddings , 1997 .
[22] O. Mangasarian. A simple characterization of solution sets of convex programs , 1988 .
[23] Katya Scheinberg,et al. Interior Point Trajectories in Semidefinite Programming , 1998, SIAM J. Optim..
[24] J. Milnor. Singular points of complex hypersurfaces , 1968 .
[25] Josef Stoer,et al. Infeasible-interior-point paths for sufficient linear complementarity problems and their analyticity , 1998, Math. Program..
[26] Josef Stoer,et al. On the analyticity properties of infeasible-interior-point paths for monotone linear complementarity problems , 1999, Numerische Mathematik.
[27] Osman Güler,et al. Limiting behavior of weighted central paths in linear programming , 1994, Math. Program..
[28] Renato D. C. Monteiro,et al. Limiting behavior of the affine scaling continuous trajectories for linear programming problems , 1991, Math. Program..
[29] E. D. Klerk,et al. Aspects of semidefinite programming : interior point algorithms and selected applications , 2002 .
[30] Renato D. C. Monteiro,et al. Properties of an Interior-Point Mapping for Mixed Complementarity Problems , 1996, Math. Oper. Res..
[31] R. Monteiro,et al. Limiting behavior of the derivatives of certain trajectories associated with a monotone horizontal linear complementarity problem , 1996 .
[32] A. Forsgren,et al. CHARACTERIZATION OF THE LIMIT POINT OF THE CENTRAL PATH IN SEMIDEFINITE PROGRAMMING , 2002 .
[33] L. M. Graña Drummond,et al. THE CENTRAL PATH IN SMOOTH CONVEX SEMIDEFINITE PROGRAMS , 2002 .
[34] John Milnor,et al. Singular Points of Complex Hypersurfaces. (AM-61), Volume 61 , 1969 .
[35] Margaréta Halická,et al. Analyticity of the central path at the boundary point in semidefinite programming , 2002, Eur. J. Oper. Res..
[36] Henry Wolkowicz,et al. Handbook of Semidefinite Programming , 2000 .
[37] N. Megiddo. Pathways to the optimal set in linear programming , 1989 .
[38] Etienne de Klerk,et al. Initialization in semidefinite programming via a self-dual skew-symmetric embedding , 1997, Oper. Res. Lett..
[39] Zhi-Quan Luo,et al. Superlinear Convergence of a Symmetric Primal-Dual Path Following Algorithm for Semidefinite Programming , 1998, SIAM J. Optim..
[40] Margaréta Halická,et al. Analytical properties of the central path at boundary point in linear programming , 1999, Math. Program..