Electrolyte transport through nanofiltration membranes by the space-charge model and the comparison with Teorell-Meyer- Sievers model
暂无分享,去创建一个
Shoji Kimura | Shin-ichi Nakao | Toshinori Tsuru | S. Nakao | Xiao-lin Wang | T. Tsuru | S. Kimura | Xiao-Lin Wang
[1] F. A. Morrison,et al. Electrokinetic Energy Conversion in Ultrafine Capillaries , 1965 .
[2] K. Meyer,et al. La perméabilité des membranes I. Théorie de la perméabilité ionique , 1936 .
[3] R. Probstein,et al. Electrokinetic salt rejection in hyperfiltration through porous materials. Theory and experiment , 1972 .
[4] J. L. Anderson,et al. The streaming potential and inadequacies of the Helmholtz equation , 1985 .
[5] O. Kedem,et al. Hyperfiltration in charged membranes: the fixed charge model , 1967 .
[6] K. Meyer,et al. La perméabilité des membranes. II. Essais avec des membranes sélectives artificielles , 1936 .
[7] Egon Matijević,et al. Surface and Colloid Science , 1971 .
[8] J. Anderson,et al. Experimental Verification of the Space‐Charge Model for Electrokinetics in Charged Microporous Membranes , 1983 .
[9] R. J. Petersen,et al. Composite reverse osmosis and nanofiltration membranes , 1993 .
[10] S. Nakao,et al. Negative rejection of anions in the loose reverse osmosis separation of mono- and divalent ion mixtures , 1991 .
[11] K. S. Spiegler,et al. Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes , 1966 .
[12] F. Tejerina,et al. Study of some electrokinetic phenomena in charged microcapillary porous membranes , 1987 .
[13] K. Meyer,et al. La perméabilité des membranes. IV. Analyse de la structure de membranes végétales et animales , 1936 .
[14] J. F. Osterle,et al. Membrane transport characteristics of ultrafine capillaries. , 1968, The Journal of chemical physics.
[15] A. Katchalsky,et al. Permeability of composite membranes. Part 1.—Electric current, volume flow and flow of solute through membranes , 1963 .
[16] Shoji Kimura,et al. Calculation of ion rejection by extended nernst-planck equation with charged reverse osmosis membranes for single and mixed electrolyte solutions , 1991 .
[17] A. Giménez,et al. Streaming potential of some polycarbonate microporous membranes when bathed by LiCl, NaCl, MgCl2 and CaCl2 aqueous solutions , 1989 .
[18] Eli Ruckenstein,et al. Electrolyte osmosis through capillaries , 1981 .
[19] F. A. Siddiqi,et al. Studies of membrane phenomena , 1969 .
[20] O. Kedem,et al. Thermodynamics of hyperfiltration (reverse osmosis) , 1966 .
[21] Shoji Kimura,et al. Reverse Osmosis of Single and Mixed Electrolytes with Charged Membranes: Experiment and Analysis , 1991 .
[22] E. Ruckenstein,et al. Anomalous effects during electrolyte osmosis across charged porous membranes , 1982 .
[23] Robert Rautenbach,et al. Separation potential of nanofiltration membranes , 1990 .
[24] H. Fujita,et al. Studies of membrane phenomena. VII. Effective charge densities of membrane , 1968 .
[25] J. Smit,et al. The application of the space-charge model to the permeability properties of charged microporous membranes , 1985 .
[26] Norman Epstein,et al. Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials , 1975 .
[27] H. Fujita,et al. Studies of Membrane Phenomena. I. Membrane Potential , 1965 .
[28] R. Probstein,et al. Brackish water salt rejection by porous hyperfiltration membranes , 1973 .
[29] J. Smit. Reverse osmosis in charged membranes: Analytical predictions from the space-charge model , 1989 .
[30] I. B. Oldham,et al. Streaming potential in small capillaries , 1963 .
[31] J. C. Fair,et al. Reverse Electrodialysis in Charged Capillary Membranes , 1971 .
[32] E. Ruckenstein,et al. Viscoelectric effects in reverse osmosis , 1981 .
[33] S. Dukhin,et al. Phenomenological theory of reverse osmosis in macroscopically homogeneous membranes and its specification for the capillary space-charge model , 1993 .