Isomorphism-free lexicographic enumeration of triangulated surfaces and 3-manifolds
暂无分享,去创建一个
[1] E. C. Zeeman,et al. IMBEDDING OF MANIFOLDS IN EUCLIDEAN SPACE , 1961 .
[2] Basudeb Datta,et al. Degree-regular triangulations of torus and Klein bottle , 2004 .
[3] Peter McMullen,et al. Equivelar polyhedral manifolds inE3 , 1982 .
[4] David Barnette. All triangulations of the projective plane are geometrically realizable inE4 , 1983 .
[5] Peter Schuchert,et al. Neighborly 2-Manifolds with 12 Vertices , 1996, J. Comb. Theory, Ser. A.
[6] Alexander Russell,et al. Computational topology: ambient isotopic approximation of 2-manifolds , 2003, Theor. Comput. Sci..
[7] Isabella Novik,et al. A Note on Geometric Embeddings of Simplicial Complexes in a Euclidean Space , 2000, Discret. Comput. Geom..
[8] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[9] Basudeb Datta,et al. Equivelar Polyhedra with Few Vertices , 2001, Discret. Comput. Geom..
[10] Gennaro Amendola,et al. Decomposition and Enumeration of Triangulated Surfaces , 2007, Exp. Math..
[11] Rainer Bodendiek,et al. Topics in combinatorics and graph theory : essays in honour of Gerhard Ringel , 1990 .
[12] Anita Patil-Deshmukh,et al. Maps , 1992 .
[13] G. Perelman. Ricci flow with surgery on three-manifolds , 2003, math/0303109.
[14] Ulrich Brehm,et al. Polyhedral Maps with Few Edges , 1990 .
[15] A. Upadhyay,et al. Degree-regular triangulations of the double-torus , 2005, math/0508106.
[16] Edwin E. Moise,et al. Affine structures in 3-manifolds, V, The triangulation theorem and Hauptvermutung , 1952 .
[17] Jörg M. Wills,et al. On Coxeter's regular skew polyhedra , 1986, Discret. Math..
[18] H. Whitney. The Self-Intersections of a Smooth n-Manifold in 2n-Space , 1944 .
[19] Basudeb Datta,et al. Two-dimensional weak pseudomanifolds on eight vertices , 2002 .
[20] Amos Altshuler,et al. Construction and enumeration of regular maps on the torus , 1973, Discret. Math..
[21] J. Rubinstein,et al. An Algorithm to Recognize the 3-Sphere , 1995 .
[22] Lars Schewe,et al. Nonrealizable Minimal Vertex Triangulations of Surfaces: Showing Nonrealizability Using Oriented Matroids and Satisfiability Solvers , 2008, Discret. Comput. Geom..
[23] Aleksandar Mijatović. Triangulations of Seifert fibred manifolds , 2003 .
[24] Amos Altshuler. Construction and Representation of Neighborly Manifolds , 1997, J. Comb. Theory, Ser. A.
[25] Atsuhiro Nakamoto,et al. Geometric Realization of a Triangulation on the Projective Plane with One Face Removed , 2008, Discret. Comput. Geom..
[26] Jörg M. Wills,et al. Geometric realizations for Dyck's regular map on a surface of genus 3 , 1986, Discret. Comput. Geom..
[27] R. Read. Every one a Winner or how to Avoid Isomorphism Search when Cataloguing Combinatorial Configurations , 1978 .
[28] Felix Klein,et al. Ueber die Transformation siebenter Ordnung der elliptischen Functionen , 1878 .
[29] Peter McMullen,et al. Polyhedral 2-manifolds inE3 with unusually large genus , 1983 .
[30] Dan Archdeacon,et al. How to Exhibit Toroidal Maps in Space , 2007, Discret. Comput. Geom..
[31] G. C. Shephard,et al. Convex Polytopes , 1969, The Mathematical Gazette.
[32] B. Datta. A Note on the Existence of {k, k}-equivelar Polyhedral Maps , 2005, math/0506618.
[33] António Guedes de Oliveira,et al. On the Generation of Oriented Matroids , 2000, Discret. Comput. Geom..
[34] Wolfgang Kühnel,et al. Equivelar maps on the torus , 2008, Eur. J. Comb..
[35] G. Ringel,et al. Minimal triangulations on orientable surfaces , 1980 .
[36] J. Bokowski,et al. All Realizations of Möbius' Torus with 7 Vertices , 1991 .
[37] Joseph O'Rourke,et al. Handbook of Discrete and Computational Geometry, Second Edition , 1997 .
[38] B. Grünbaum,et al. An enumeration of simplicial 4-polytopes with 8 vertices , 1967 .
[39] B. Sturmfels. Computational Synthetic Geometry , 1989 .
[40] A. Fomenko,et al. THE PROBLEM OF DISCRIMINATING ALGORITHMICALLY THE STANDARD THREE-DIMENSIONAL SPHERE , 1974 .
[41] Jonathan L. Gross,et al. Handbook of graph theory , 2007, Discrete mathematics and its applications.
[42] D. Timmreck. Necessary Conditions for Geometric Realizability of Simplicial Complexes , 2007, 0705.1912.
[43] A. Mijatović. Simplifying triangulations of S3 , 2003 .
[44] P. J. Heawood. Map-Colour Theorem , 1949 .
[45] Brendan D. McKay,et al. Isomorph-Free Exhaustive Generation , 1998, J. Algorithms.
[46] Walther Dyck. Ueber Aufstellung und Untersuchung von Gruppe und Irrationalität regulärer Riemann'scher Flächen , 1880 .
[47] Peter McMullen,et al. Infinite series of combinatorially regular polyhedra in three-space , 1988 .
[48] Frank H. Lutz. Small Examples of Nonconstructible Simplicial Balls and Spheres , 2004, SIAM J. Discret. Math..
[49] Frank H. Lutz,et al. Knotted Polyhedral Tori , 2007, 0707.1281.
[50] Amos Altshuler. Polyhedral realization in R3 of triangulations of the torus and 2-manifolds in cyclic 4-polytopes , 1971, Discret. Math..
[51] Jürgen Bokowski. On Heuristic Methods for Finding Realizations of Surfaces , 2008 .
[52] W. T. Tutte. How to Draw a Graph , 1963 .
[53] Frank H. Lutz. Combinatorial 3-manifolds with 10 vertices , 2006 .
[54] Abigail Thompson,et al. Thin Position and the Recognition Problem for $\bold{S^3}$ , 1994 .
[55] Marston D. E. Conder,et al. Determination of all Regular Maps of Small Genus , 2001, J. Comb. Theory, Ser. B.
[56] F. A. Sherk. The regular maps on a surface of genus three , 1959 .
[57] Jürgen Richter-Gebert. Realization Spaces of Polytopes , 1996 .
[58] Bhaskar Bagchi,et al. Combinatorial triangulations of homology spheres , 2005, Discret. Math..
[59] Jörg M. Wills,et al. Regular polyhedra with hidden symmetries , 1988 .
[60] Aleksandar Mijatovic. Simplifying triangulations of S^3 , 2000 .
[61] Sergei Matveev,et al. Algorithmic Topology and Classification of 3-Manifolds , 2003 .
[62] Amos Altshuler,et al. A non-Schlegelian polyhedral map on the torus , 1984 .
[63] Simon A. King. How to make a triangulation of S^3 polytopal , 2000 .
[64] G. Ringel,et al. Wie man die geschlossenen nichtorientierbaren Flächen in möglichst wenig Dreiecke zerlegen kann , 1955 .
[65] Frank H. Lutz,et al. Simplicial Manifolds, Bistellar Flips and a 16-Vertex Triangulation of the Poincaré Homology 3-Sphere , 2000, Exp. Math..
[67] Frank H. Lutz,et al. Konrad-zuse-zentrum F ¨ Ur Informationstechnik Berlin Triangulated Manifolds with Few Vertices: Combinatorial Manifolds , 2022 .
[68] A maximally symmetric polyhedron of genus 3 with 10 vertices , 1987 .
[69] D. Barnette,et al. All 2-manifolds have finitely many minimal triangulations , 1989 .
[70] G. Perelman. Finite extinction time for the solutions to the Ricci flow on certain three-manifolds , 2003, math/0307245.
[71] D. Epstein,et al. Three-dimensional manifolds , 1960 .
[72] Jörg M. Wills,et al. Handbook of Convex Geometry , 1993 .
[73] Egon Schulte,et al. Polyhedral Maps , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..
[74] Lars Schewe. Satisfiability Problems in Discrete Geometry , 2007 .
[75] G. Ziegler,et al. Polyhedral surfaces in wedge products , 2009, 0908.3159.
[76] Walther Dyck. Notiz über eine reguläre Riemann'sche Fläche vom Geschlechte drei und die zugehörige “Normalcurve” vierter Ordnung , 1880 .
[77] W. Thurston. Three dimensional manifolds, Kleinian groups and hyperbolic geometry , 1982 .
[78] Amos Altshuler. Manifolds in stacked 4-polytopes , 1971 .
[79] Thom Sulanke. Generating irreducible triangulations of surfaces , 2006 .
[80] S. A. Lavrenchenko,et al. Irreducible triangulations of the torus , 1990 .
[81] H. Coxeter,et al. Generators and relations for discrete groups , 1957 .
[82] M. Ellingham,et al. Triangular embeddings of complete graphs (neighborly maps) with 12 and 13 vertices , 2005 .
[83] Sergei Matveev,et al. Algorithmic Topology and Classification of 3-Manifolds (Algorithms and Computation in Mathematics) , 2007 .
[84] G. Ringel. Map Color Theorem , 1974 .
[85] E. Steinitz,et al. Vorlesungen über die Theorie der Polyeder unter Einfluss der Elemente der Topologie , 1934 .
[86] David W. Barnette. The Triangulations of the 3-Sphere with up to 8 Vertices , 1973, J. Comb. Theory, Ser. A.
[87] Abigail Thompson,et al. THIN POSITION AND THE RECOGNITION PROBLEM FOR S3 , 1994 .
[88] B. McKay,et al. Fast generation of planar graphs , 2007 .
[89] J. Matousek,et al. Using The Borsuk-Ulam Theorem , 2007 .
[90] S. Hougardy,et al. Surface realization with the intersection edge functional , 2006, math/0608538.
[91] Wolfgang Kühnel,et al. Neighborly combinatorial 3-manifolds with dihedral automorphism group , 1985 .
[92] Afra Zomorodian,et al. Computational topology , 2010 .
[93] John Stillwell,et al. Three-Dimensional Manifolds , 1980 .
[94] G. Ziegler. Polyhedral Surfaces of High Genus , 2004, math/0412093.
[95] Sergei Matveev,et al. An algorithm for the recognition of 3-spheres (according to Thompson) , 1995 .
[96] Frank H. Lutz,et al. Konrad-zuse-zentrum F ¨ Ur Informationstechnik Berlin Enumeration and Random Realization of Triangulated Surfaces Enumeration and Random Realization of Triangulated Surfaces , 2022 .
[97] Thom Sulanke. Irreducible triangulations of low genus surfaces , 2006 .
[98] Jiirgen Bokowski. A geometric realization without self-intersections does exist for Dyck's regular map , 1989, Discret. Comput. Geom..
[99] Kenneth H. Rosen,et al. Discrete Mathematics and its applications , 2000 .
[100] Göran Schild,et al. Some minimal nonembeddable complexes , 1993 .
[101] U. Brehm. Maximally symmetric polyhedral realizations of Dyck's regular map , 1987 .
[102] F. Lutz,et al. Triangulated Manifolds with Few Vertices: Vertex-Transitive Triangulations I , 2005, math/0506520.
[103] E. Schulte,et al. A Polyhedral Realization of Felix Klein's Map {3, 7}8 on a Riemann Surface of Genus 3 , 1985 .
[104] D. Walkup. The lower bound conjecture for 3- and 4-manifolds , 1970 .
[105] Ulrich Brehm,et al. Realizability of the torus and the projective plane in ℝ4 , 1995 .
[106] B. Everitt. The Cambridge Dictionary of Statistics , 1998 .
[107] Jürgen Bokowski,et al. A polyhedron of genus 4 with minimal number of vertices and maximal symmetry , 1989 .