Quantum adiabatic cycles and their breakdown

The assumption that quasi-static transformations do not quantitatively alter the equilibrium expectation of observables is at the heart of thermodynamics and, in the quantum realm, its validity may be confirmed by the application of adiabatic perturbation theory. Yet, this scenario does not straightforwardly apply to Bosonic systems whose excitation energy is slowly driven through the zero. Here, we prove that the universal slow dynamics of such systems is always non-adiabatic and the quantum corrections to the equilibrium observables become rate independent for any dynamical protocol in the slow drive limit. These findings overturn the common expectation for quasi-static processes as they demonstrate that a system as simple and general as the quantum harmonic oscillator, does not allow for a slow-drive limit, but it always displays sudden quench dynamics. While the Landau-Zener problem is conventionally used to describe defects formation in quantum systems, it cannot be applied to non-interacting Bose excitations as the adiabatic perturbation theory assumptions are violated by Bose statistics. Here, the author investigates adiabatic cycles across quantum critical points with harmonic Bose quasi-particles and shows that adiabaticity breakdown is a universal feature of these systems

[1]  Thermodynamics: Limited adiabaticity , 2008 .

[2]  H. Lipkin,et al.  VALIDITY OF MANY-BODY APPROXIMATION METHODS FOR A SOLVABLE MODEL. III. DIAGRAM SUMMATIONS , 1965 .

[3]  A. Minguzzi,et al.  Exact Coherent States of a Harmonically Confined Tonks-Girardeau Gas , 2005, cond-mat/0504024.

[4]  Jacek Dziarmaga,et al.  Dynamics of a quantum phase transition and relaxation to a steady state , 2009, 0912.4034.

[5]  D. Hartree The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  Leo P. Kadanoff,et al.  Real Space Renormalization in Statistical Mechanics , 2013, 1301.6323.

[7]  A. Polkovnikov,et al.  Adiabatic Perturbation Theory: From Landau–Zener Problem to Quenching Through a Quantum Critical Point , 2009, 0910.2236.

[8]  B. Simon,et al.  Phase Transitions and Continuous Symmetry Breaking , 1976 .

[9]  I. Klebanov,et al.  Critical $O(N)$ models in $6-\epsilon$ dimensions , 2014, 1404.1094.

[10]  V. Fock,et al.  Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems , 1930 .

[11]  J. E. Avron,et al.  Adiabatic Theorem without a Gap Condition , 1999 .

[12]  Vojta Quantum version of a spherical model: Crossover from quantum to classical critical behavior. , 1996, Physical review. B, Condensed matter.

[13]  M. Kastner,et al.  Dynamical Critical Scaling of Long-Range Interacting Quantum Magnets. , 2018, Physical review letters.

[14]  M. Lavagna Quantum Phase Transitions , 2001, cond-mat/0102119.

[15]  The simplest quantum model supporting the Kibble-Zurek mechanism of topological defect production: Landau-Zener transitions from a new perspective. , 2004, Physical review letters.

[16]  H. Kleinert,et al.  Critical Properties of Phi4- Theories , 2001 .

[17]  On the Hamiltonian structure of Ermakov systems , 1996, math-ph/0211032.

[18]  L. Dell'Anna,et al.  Universal dynamical scaling of long-range topological superconductors , 2019, Physical Review B.

[19]  R. Dabrowski,et al.  Time dependence of adiabatic particle number , 2016, 1606.00902.

[20]  The Unitary Gas and its Symmetry Properties , 2011, 1103.2851.

[21]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[22]  P. Zoller,et al.  Dynamics of a quantum phase transition. , 2005, Physical review letters.

[23]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[24]  Tosio Kato On the Adiabatic Theorem of Quantum Mechanics , 1950 .

[25]  O. L. Acevedo,et al.  New dynamical scaling universality for quantum networks across adiabatic quantum phase transitions. , 2013, Physical review letters.

[26]  V. Fock,et al.  Beweis des Adiabatensatzes , 1928 .

[27]  Universal adiabatic dynamics in the vicinity of a quantum critical point , 2003, cond-mat/0312144.

[28]  N. Defenu,et al.  Critical exponents of O (N ) models in fractional dimensions , 2014, 1410.3308.

[29]  H. R. Lewis,et al.  An Exact Quantum Theory of the Time‐Dependent Harmonic Oscillator and of a Charged Particle in a Time‐Dependent Electromagnetic Field , 1969 .

[30]  A. Perelomov Generalized Coherent States and Their Applications , 1986 .

[31]  N. Defenu,et al.  Metastability and discrete spectrum of long-range systems , 2020, Proceedings of the National Academy of Sciences.

[32]  H. R. Lewis,et al.  Class of Exact Invariants for Classical and Quantum Time‐Dependent Harmonic Oscillators , 1968 .

[33]  S. Jochim,et al.  Quantum scale anomaly and spatial coherence in a 2D Fermi superfluid , 2018, Science.

[34]  M. Fraas,et al.  Dynamical Crossing of an Infinitely Degenerate Critical Point , 2016, 1602.08896.

[35]  Wojciech H. Zurek,et al.  Universality of Phase Transition Dynamics: Topological Defects from Symmetry Breaking , 2013, 1310.1600.

[36]  Julien Vidal,et al.  Finite-size scaling exponents of the Lipkin-Meshkov-Glick model. , 2004, Physical review letters.

[37]  N. Defenu,et al.  The fate of $O(N)$ multi-critical universal behaviour , 2020, 2005.10827.

[38]  É. Brézin,et al.  Renormalization of the nonlinear sigma model in 2 + epsilon dimensions. Application to the Heisenberg ferromagnets , 1976 .

[39]  W. H. Zurek,et al.  Cosmological experiments in superfluid helium? , 1985, Nature.

[40]  A. Codello,et al.  O(N)-universality classes and the Mermin-Wagner theorem. , 2012, Physical review letters.

[41]  I. Klebanov,et al.  Three loop analysis of the critical O (N) models in 6-ε dimensions , 2014, 1411.1099.

[42]  C. Furtado,et al.  Scalar fields and exact invariants in a Friedmann-Robertson-Walker spacetime , 2004 .

[43]  K. Wilson,et al.  The Renormalization group and the epsilon expansion , 1973 .

[44]  S. Ruffo,et al.  Criticality and phase diagram of quantum long-range O( N ) models , 2017, 1704.00528.

[45]  Harry J. Lipkin,et al.  Validity of many-body approximation methods for a solvable model: (II). Linearization procedures , 1965 .

[46]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[47]  S. Gubser,et al.  Equilibration and coarsening in the quantum O(N) model at infinite N , 2013, 1304.2402.

[48]  Breathing modes and hidden symmetry of trapped atoms in two dimensions , 1996, cond-mat/9608135.

[49]  P. Howe,et al.  Multicritical points in two dimensions, the renormalization group and the ϵ expansion , 1989 .

[50]  H. Lipkin,et al.  Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory , 1965 .

[51]  Coherent state representation of quantum fluctuations in the early Universe. , 1992, Physical review. D, Particles and fields.

[52]  C. Zener Non-Adiabatic Crossing of Energy Levels , 1932 .

[53]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[54]  Jean Zinn-Justin,et al.  Quantum field theory in the large N limit: a review , 2003 .

[55]  D. Haar,et al.  Statistical Physics , 1971, Nature.

[56]  Wojciech Hubert Zurek,et al.  Cosmological experiments in condensed matter systems , 1996 .

[57]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[58]  A. Jensen,et al.  A solvable model of the breakdown of the adiabatic approximation , 2020, 2001.07085.

[59]  P. Zoller,et al.  A quantum annealing architecture with all-to-all connectivity from local interactions , 2015, Science Advances.

[60]  A. Polkovnikov,et al.  Breakdown of the adiabatic limit in low-dimensional gapless systems , 2007, 0803.3967.

[61]  Alexander Elgart,et al.  The Adiabatic Theorem of Quantum Mechanics , 1998 .

[62]  Víctor M. Pérez-García,et al.  Dynamics of Bose-Einstein condensates: Variational solutions of the Gross-Pitaevskii equations , 1997 .

[63]  T. Gasenzer,et al.  Quantum versus classical statistical dynamics of an ultracold Bose gas , 2007, cond-mat/0703163.

[64]  D. Hartree The Wave Mechanics of an Atom with a non-Coulomb Central Field. Part III. Term Values and Intensities in Series in Optical Spectra , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[65]  Jacek Dziarmaga,et al.  Dynamics of a quantum phase transition: exact solution of the quantum Ising model. , 2005, Physical review letters.

[66]  J. Lewis Classical and Quantum Systems with Time-Dependent Harmonic-Oscillator-Type Hamiltonians , 1967 .

[67]  B. Delamotte,et al.  Surprises in O(N) Models: Nonperturbative Fixed Points, Large N Limits, and Multicriticality. , 2017, Physical review letters.

[68]  S. Dusuel,et al.  Finite-size scaling exponents in the Dicke model , 2005, cond-mat/0510281.