Cryo-electron microscopy modeling by the molecular dynamics flexible fitting method.

The increasing power and popularity of cryo-electron microscopy (cryo-EM) in structural biology brought about the development of so-called hybrid methods, which permit the interpretation of cryo-EM density maps beyond their nominal resolution in terms of atomic models. The Cryo-EM Modeling Challenge 2010 is the first community effort to bring together developers of hybrid methods as well as cryo-EM experimentalists. Participating in the challenge, the molecular dynamics flexible fitting (MDFF) method was applied to a number of cryo-EM density maps. The results are described here with special emphasis on the use of symmetry-based restraints to improve the quality of atomic models derived from density maps of symmetric complexes; on a comparison of the stereochemical quality of atomic models resulting from different hybrid methods; and on application of MDFF to electron crystallography data.

[1]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[2]  Christian Zwieb,et al.  Visualizing the transfer-messenger RNA as the ribosome resumes translation , 2010, The EMBO journal.

[3]  Koji Yonekura,et al.  Conformational change of flagellin for polymorphic supercoiling of the flagellar filament , 2010, Nature Structural &Molecular Biology.

[4]  Klaus Schulten,et al.  Molecular dynamics of EF‐G during translocation , 2011, Proteins.

[5]  Andrew R. Gehrke,et al.  Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo , 2010, The EMBO journal.

[6]  W. Chiu,et al.  The Structure of Barmah Forest Virus as Revealed by Cryo-Electron Microscopy at a 6-Angstrom Resolution Has Detailed Transmembrane Protein Architecture and Interactions , 2011, Journal of Virology.

[7]  Karl-Peter Hopfner,et al.  Structure and mechanism of the Swi2/Snf2 remodeller Mot1 in complex with its substrate TBP , 2011, Nature.

[8]  Kenneth C Holmes,et al.  The actin-myosin interface , 2010, Proceedings of the National Academy of Sciences.

[9]  J. Frank Single-particle reconstruction of biological macromolecules in electron microscopy – 30 years , 2009, Quarterly Reviews of Biophysics.

[10]  G. Kleywegt Use of non-crystallographic symmetry in protein structure refinement. , 1996, Acta crystallographica. Section D, Biological crystallography.

[11]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[12]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[13]  B. Felden,et al.  tmRNA–SmpB: a journey to the centre of the bacterial ribosome , 2010, The EMBO journal.

[14]  Petra Fromme,et al.  Fitting low-resolution cryo-EM maps of proteins using constrained geometric simulations. , 2008, Biophysical journal.

[15]  K. Palczewski,et al.  Use of thallium to identify monovalent cation binding sites in GroEL. , 2009, Acta crystallographica. Section F, Structural biology and crystallization communications.

[16]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[17]  Michael Levitt,et al.  Combining efficient conformational sampling with a deformable elastic network model facilitates structure refinement at low resolution. , 2007, Structure.

[18]  Marina V. Rodnina,et al.  Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy , 2010, Nature.

[19]  Xiao-jing Wang,et al.  Characterization of the structure and function of Escherichia coli DegQ as a representative of the DegQ-like proteases of bacterial HtrA family proteins. , 2011, Structure.

[20]  Klaus Schulten,et al.  Structural Insight into Nascent Polypeptide Chain–Mediated Translational Stalling , 2009, Science.

[21]  Daniel N. Wilson,et al.  Localization of eukaryote-specific ribosomal proteins in a 5.5-Å cryo-EM map of the 80S eukaryotic ribosome , 2010, Proceedings of the National Academy of Sciences.

[22]  Alexander D. MacKerell,et al.  Extending the treatment of backbone energetics in protein force fields: Limitations of gas‐phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations , 2004, J. Comput. Chem..

[23]  Klaus Schulten,et al.  The role of L1 stalk-tRNA interaction in the ribosome elongation cycle. , 2010, Journal of molecular biology.

[24]  V. Hornak,et al.  Comparison of multiple Amber force fields and development of improved protein backbone parameters , 2006, Proteins.

[25]  M van Heel,et al.  A new generation of the IMAGIC image processing system. , 1996, Journal of structural biology.

[26]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[27]  H. Saibil,et al.  Allosteric signaling of ATP hydrolysis in GroEL–GroES complexes , 2006, Nature Structural &Molecular Biology.

[28]  Klaus Schulten,et al.  Recognition of the regulatory nascent chain TnaC by the ribosome. , 2010, Structure.

[29]  Klaus Schulten,et al.  Formation of salt bridges mediates internal dimerization of myosin VI medial tail domain. , 2010, Structure.

[30]  Leonardo G. Trabuco,et al.  Molecular dynamics flexible fitting: a practical guide to combine cryo-electron microscopy and X-ray crystallography. , 2009, Methods.

[31]  Barry Honig,et al.  Backbone model of an aquareovirus virion by cryo-electron microscopy and bioinformatics. , 2010, Journal of molecular biology.

[32]  S. Harrison,et al.  Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction , 2008, Proceedings of the National Academy of Sciences.

[33]  Dale E Tronrud,et al.  Introduction to macromolecular refinement. , 2004, Methods in molecular biology.

[34]  M. Baker,et al.  4.4 Å cryo-EM structure of an enveloped alphavirus Venezuelan equine encephalitis virus , 2011, The EMBO journal.

[35]  V. Ramakrishnan,et al.  Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome , 2009, Nature Structural &Molecular Biology.

[36]  Klaus Schulten,et al.  METHODOLOGY ARTICLE Open Access , 2009 .

[37]  Klaus Schulten,et al.  Structural insights into cognate versus near‐cognate discrimination during decoding , 2011, The EMBO journal.

[38]  Bonnie Draper,et al.  Regulation by interdomain communication of a headful packaging nuclease from bacteriophage T4 , 2010, Nucleic acids research.

[39]  James C. Phillips,et al.  Parallel Generalized Born Implicit Solvent Calculations with NAMD. , 2011, Journal of chemical theory and computation.

[40]  Thomas Walz,et al.  Principles of membrane protein interactions with annular lipids deduced from aquaporin-0 2D crystals , 2010, The EMBO journal.

[41]  Wah Chiu,et al.  Near-atomic-resolution cryo-EM for molecular virology. , 2011, Current opinion in virology.

[42]  R. Parton,et al.  Role of SNX16 in the Dynamics of Tubulo-Cisternal Membrane Domains of Late Endosomes , 2011, PloS one.

[43]  Wei Zhang,et al.  GTPase activation of elongation factor EF‐Tu by the ribosome during decoding , 2009, The EMBO journal.

[44]  Klaus Schulten,et al.  Structure of Monomeric Yeast and Mammalian Sec61 Complexes Interacting with the Translating Ribosome , 2009, Science.

[45]  David Baker,et al.  Macromolecular modeling with rosetta. , 2008, Annual review of biochemistry.

[46]  T. Petrova,et al.  Protein crystallography at subatomic resolution , 2004 .

[47]  Klaus Schulten,et al.  Generalized Verlet Algorithm for Efficient Molecular Dynamics Simulations with Long-range Interactions , 1991 .

[48]  Cherisse R. Loucks,et al.  Ribosome Assembly Factors Prevent Premature Translation Initiation by 40S Assembly Intermediates , 2011, Science.

[49]  Klaus Schulten,et al.  Cryo–EM structure of the ribosome–SecYE complex in the membrane environment , 2011, Nature Structural &Molecular Biology.

[50]  Klaus Schulten,et al.  Regulation of the protein-conducting channel by a bound ribosome. , 2009, Structure.

[51]  Wah Chiu,et al.  Cryo-EM of macromolecular assemblies at near-atomic resolution , 2010, Nature Protocols.

[52]  Dong-Hua Chen,et al.  De novo backbone trace of GroEL from single particle electron cryomicroscopy. , 2008, Structure.

[53]  E. Egelman A robust algorithm for the reconstruction of helical filaments using single-particle methods. , 2000, Ultramicroscopy.

[54]  E. Villa,et al.  Structure of the no-go mRNA decay complex Dom34–Hbs1 bound to a stalled 80S ribosome , 2011, Nature Structural &Molecular Biology.

[55]  J. Mccammon,et al.  Situs: A package for docking crystal structures into low-resolution maps from electron microscopy. , 1999, Journal of structural biology.

[56]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[57]  J. Šponer,et al.  Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Conformers , 2007 .

[58]  Magali Mathieu,et al.  Atomic structure of the major capsid protein of rotavirus: implications for the architecture of the virion , 2001, The EMBO journal.

[59]  Jianlin Lei,et al.  Structural basis for the function of a small GTPase RsgA on the 30S ribosomal subunit maturation revealed by cryoelectron microscopy , 2011, Proceedings of the National Academy of Sciences.

[60]  F. Dimaio,et al.  Analyses of subnanometer resolution cryo-EM density maps. , 2010, Methods in enzymology.

[61]  Klaus Schulten,et al.  Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis , 2009, Proceedings of the National Academy of Sciences.

[62]  W. Hendrickson Stereochemically restrained refinement of macromolecular structures. , 1985, Methods in enzymology.

[63]  W Chiu,et al.  EMAN: semiautomated software for high-resolution single-particle reconstructions. , 1999, Journal of structural biology.

[64]  Daniel N. Wilson,et al.  Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide. , 2010, Molecular cell.

[65]  Klaus Schulten,et al.  Structural model and excitonic properties of the dimeric RC-LH1-PufX complex from Rhodobacter sphaeroides. , 2009, Chemical physics.

[66]  Klaus Schulten,et al.  Symmetry-restrained flexible fitting for symmetric EM maps. , 2011, Structure.

[67]  M. Levitt,et al.  Mechanism of Folding Chamber Closure in a Group II Chaperonin , 2010, Nature.

[68]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[69]  Daniel W. Farrell,et al.  Generating stereochemically acceptable protein pathways , 2010, Proteins.

[70]  Leonardo G. Trabuco,et al.  Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. , 2008, Structure.

[71]  Klaus Schulten,et al.  Protein-induced membrane curvature investigated through molecular dynamics flexible fitting. , 2009, Biophysical journal.

[72]  Marco Gartmann,et al.  α-Helical nascent polypeptide chains visualized within distinct regions of the ribosomal exit tunnel , 2010, Nature Structural &Molecular Biology.