Moderate deviations for fully coupled multiscale weakly interacting particle systems

[1]  Xiaobin Sun,et al.  Well-posedness and averaging principle of McKean-Vlasov SPDEs driven by cylindrical α-stable process , 2022, Stochastic Analysis and Applications.

[2]  Wei Liu,et al.  Strong convergence rates in averaging principle for slow-fast McKean-Vlasov SPDEs , 2021, Journal of Differential Equations.

[3]  Arnab Ganguly,et al.  Inhomogeneous functionals and approximations of invariant distributions of ergodic diffusions: Central limit theorem and moderate deviation asymptotics , 2021 .

[4]  A. Schlichting,et al.  Barriers of the McKean–Vlasov energy via a mountain pass theorem in the space of probability measures , 2020, Journal of Functional Analysis.

[5]  K. Spiliopoulos,et al.  Large deviations for interacting multiscale particle systems , 2020, Stochastic Processes and their Applications.

[6]  M. Rockner,et al.  Diffusion approximation for fully coupled stochastic differential equations , 2020, 2008.04817.

[7]  Albert Y. Zomaya,et al.  Partial Differential Equations , 2007, Explorations in Numerical Analysis.

[8]  Leonid Koralov,et al.  Averaging in the case of multiple invariant measures for the fast system , 2020, Electronic Journal of Probability.

[9]  G. Pavliotis,et al.  On the Diffusive-Mean Field Limit for Weakly Interacting Diffusions Exhibiting Phase Transitions , 2020, Archive for Rational Mechanics and Analysis.

[10]  M. Rockner,et al.  Strong convergence order for slow–fast McKean–Vlasov stochastic differential equations , 2019, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[11]  A. Budhiraja,et al.  Empirical Measure and Small Noise Asymptotics Under Large Deviation Scaling for Interacting Diffusions , 2019, Journal of Theoretical Probability.

[12]  K. Ramanan,et al.  From the master equation to mean field game limit theory: a central limit theorem , 2018, Electronic Journal of Probability.

[13]  R. Carmona,et al.  Probabilistic Theory of Mean Field Games with Applications II: Mean Field Games with Common Noise and Master Equations , 2018 .

[14]  K. Spiliopoulos,et al.  Pathwise moderate deviations for option pricing , 2018, Mathematical Finance.

[15]  Grigorios A. Pavliotis,et al.  Mean Field Limits for Interacting Diffusions in a Two-Scale Potential , 2017, J. Nonlinear Sci..

[16]  D. Crisan,et al.  Smoothing properties of McKean–Vlasov SDEs , 2017, 1702.01397.

[17]  Feng-Yu Wang Distribution-Dependent SDEs for Landau Type Equations , 2016, 1606.05843.

[18]  A. Budhiraja,et al.  Moderate deviation principles for weakly interacting particle systems , 2015, Probability Theory and Related Fields.

[19]  P. Lions,et al.  The Master Equation and the Convergence Problem in Mean Field Games , 2015, 1509.02505.

[20]  Josselin Garnier,et al.  Consensus Convergence with Stochastic Effects , 2015, ArXiv.

[21]  Juan Li,et al.  Mean-field stochastic differential equations and associated PDEs , 2014, 1407.1215.

[22]  Julian Tugaut,et al.  Phase transitions of McKean–Vlasov processes in double-wells landscape , 2014 .

[23]  R. Fetecau,et al.  Emergent behaviour in multi-particle systems with non-local interactions , 2013 .

[24]  B. Rémillard,et al.  On signed measure valued solutions of stochastic evolution equations , 2013, 1307.4024.

[25]  Justin A. Sirignano,et al.  Fluctuation Analysis for the Loss from Default , 2013, 1304.1420.

[26]  Sébastien Motsch,et al.  Heterophilious Dynamics Enhances Consensus , 2013, SIAM Rev..

[27]  K. Spiliopoulos Large Deviations and Importance Sampling for Systems of Slow-Fast Motion , 2012, Applied Mathematics & Optimization.

[28]  Konstantinos Spiliopoulos,et al.  Importance Sampling for Multiscale Diffusions , 2011, Multiscale Model. Simul..

[29]  Konstantinos Spiliopoulos,et al.  Large deviations for multiscale diffusion via weak convergence methods , 2010, 1011.5933.

[30]  K. Spiliopoulos Large Deviations Principle for a Large Class of One-Dimensional Markov Processes , 2010, 1006.3143.

[31]  T. Kurtz,et al.  Large Deviations for Stochastic Processes , 2006 .

[32]  Changbong Hyeon,et al.  Can energy landscape roughness of proteins and RNA be measured by using mechanical unfolding experiments? , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[33]  P. Dupuis,et al.  A variational representation for certain functionals of Brownian motion , 1998 .

[34]  Sylvie Méléard,et al.  A Hilbertian approach for fluctuations on the McKean-Vlasov model , 1997 .

[35]  J. Lynch,et al.  A weak convergence approach to the theory of large deviations , 1997 .

[36]  R. Liptser,et al.  Large deviations for two scaled diffusions , 1996, math/0510029.

[37]  J. Onuchic,et al.  Funnels, pathways, and the energy landscape of protein folding: A synthesis , 1994, Proteins.

[38]  Paolo Baldi,et al.  Large deviations for diffusion processes with homogenization and applications , 1991 .

[39]  R. Zwanzig,et al.  Diffusion in a rough potential. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[40]  J. Gärtner,et al.  Large deviations from the mckean-vlasov limit for weakly interacting diffusions , 1987 .

[41]  I. Mitoma Tightness of Probabilities On $C(\lbrack 0, 1 \rbrack; \mathscr{Y}')$ and $D(\lbrack 0, 1 \rbrack; \mathscr{Y}')$ , 1983 .

[42]  D. Dawson Critical dynamics and fluctuations for a mean-field model of cooperative behavior , 1983 .

[43]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[44]  J. Gärtner On Large Deviations from the Invariant Measure , 1977 .

[45]  Federico Toschi,et al.  Collective Dynamics from Bacteria to Crowds , 2014 .

[46]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[47]  A. Veretennikov,et al.  On the Poisson Equation and Diffusion Approximation. I Dedicated to N. v. Krylov on His Sixtieth Birthday , 2001 .

[48]  P. Dupuis,et al.  A VARIATIONAL REPRESENTATION FOR POSITIVE FUNCTIONALS OF INFINITE DIMENSIONAL BROWNIAN MOTION , 2000 .

[49]  A. Veretennikov,et al.  On Large Deviations in the Averaging Principle for SDEs with a “Full Dependence” , 1999 .

[50]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[51]  A. Veretennikov,et al.  Bounds for the Mixing Rate in the Theory of Stochastic Equations , 1988 .

[52]  M. I. Freĭdlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[53]  G. Reuter Markov Processes , 1968, Nature.

[54]  A. Veretennikov,et al.  © Institute of Mathematical Statistics, 2003 ON POISSON EQUATION AND DIFFUSION APPROXIMATION 2 1 , 2022 .