A lagrangian scheme for the solution of the optimal mass transfer problem

A lagrangian method to numerically solve the L^2 optimal mass transfer problem is presented. The initial and final density distributions are approximated by finite mass particles having a gaussian kernel. Mass conservation and the Hamilton-Jacobi equation for the potential are identically satisfied by constant mass transport along straight lines. The scheme is described in the context of existing methods to solve the problem and a set of numerical examples including applications to medical imagery are presented.

[1]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[2]  Yann Brenier,et al.  The Monge–Kantorovitch mass transfer and its computational fluid mechanics formulation , 2002 .

[3]  Wilfrid Gangbo,et al.  Existence of optimal maps in the reflector-type problems , 2007 .

[4]  Jan Modersitzki,et al.  Numerical Methods for Image Registration , 2004 .

[5]  Wilfrid Gangbo An elementary proof of the polar factorization of vector-valued functions , 1994 .

[6]  Mikhail Feldman,et al.  Fast/slow diffusion and collapsing sandpiles , 1997 .

[7]  Yann Brenier,et al.  Optimal Transport, Convection, Magnetic Relaxation and Generalized Boussinesq Equations , 2008, J. Nonlinear Sci..

[8]  B. Maury,et al.  A mathematical framework for a crowd motion model , 2008 .

[9]  E. Haber,et al.  Numerical methods for volume preserving image registration , 2004 .

[10]  Gallagher Pryor,et al.  3D nonrigid registration via optimal mass transport on the GPU , 2009, Medical Image Anal..

[11]  A. Malusa,et al.  On a system of partial differential equations of Monge–Kantorovich type , 2007 .

[12]  Allen Tannenbaum,et al.  Mathematical Methods in Computer Vision , 2003 .

[13]  A. Malusa,et al.  A Variational Approach to the Macroscopic Electrodynamics of Anisotropic Hard Superconductors , 2006 .

[14]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[15]  Allen R. Tannenbaum,et al.  An Efficient Numerical Method for the Solution of the L2 Optimal Mass Transfer Problem , 2010, SIAM J. Sci. Comput..

[16]  C. Villani Topics in Optimal Transportation , 2003 .

[17]  C. Villani Optimal Transport: Old and New , 2008 .

[18]  M. J. P. Cullen,et al.  A Duality Principle in Semigeostrophic Theory , 1987 .

[19]  Steven Haker,et al.  Minimizing Flows for the Monge-Kantorovich Problem , 2003, SIAM J. Math. Anal..