Deep learning-based multimodal segmentation of oropharyngeal squamous cell carcinoma on CT and MRI using self-configuring nnU-Net.

[1]  M. Essler,et al.  Deep learning enables automated MRI-based estimation of uterine volume also in patients with uterine fibroids undergoing high-intensity focused ultrasound therapy , 2023, Insights into Imaging.

[2]  D. Conway,et al.  Reviewing the epidemiology of head and neck cancer: definitions, trends and risk factors , 2022, British Dental Journal.

[3]  E. Vokes,et al.  Assessment of Tumor Burden and Response by RECIST vs. Volume Change in HPV+ Oropharyngeal Cancer – An Exploratory Analysis of Prospective Trials , 2022, International Journal of Radiation Oncology*Biology*Physics.

[4]  M. Koizumi,et al.  Clinical target volume segmentation based on gross tumor volume using deep learning for head and neck cancer treatment. , 2022, Medical dosimetry : official journal of the American Association of Medical Dosimetrists.

[5]  A. French,et al.  Semantic Segmentation of Spontaneous Intracerebral Hemorrhage, Intraventricular Hemorrhage, and Associated Edema on CT Images Using Deep Learning. , 2022, Radiology. Artificial intelligence.

[6]  Ping Wang,et al.  Combining the radiomics signature and HPV status for the risk stratification of patients with OPC. , 2022, Oral diseases.

[7]  Joseph Nathanael Witanto,et al.  Fully Automated MRI Segmentation and Volumetric Measurement of Intracranial Meningioma Using Deep Learning , 2022, Journal of magnetic resonance imaging : JMRI.

[8]  Ziyan Wang,et al.  Automated Measurement of Pancreatic Fat Deposition on Dixon MRI Using nnU‐Net , 2022, Journal of magnetic resonance imaging : JMRI.

[9]  B. Menon,et al.  Variability assessment of manual segmentations of ischemic lesion volume on 24-h non-contrast CT , 2021, Neuroradiology.

[10]  Chris C. Duszynski,et al.  Evaluating nnU-Net for early ischemic change segmentation on non-contrast computed tomography in patients with Acute Ischemic Stroke , 2021, Comput. Biol. Medicine.

[11]  Se-Heon Kim,et al.  Prediction of treatment outcome using MRI radiomics and machine learning in oropharyngeal cancer patients after surgical treatment. , 2021, Oral oncology.

[12]  A. Madabhushi,et al.  Radiomic Features Associated With HPV Status on Pretreatment Computed Tomography in Oropharyngeal Squamous Cell Carcinoma Inform Clinical Prognosis , 2021, Frontiers in Oncology.

[13]  G. Dot,et al.  Fully automatic segmentation of craniomaxillofacial CT scans for computer-assisted orthognathic surgery planning using the nnU-Net framework , 2021, European Radiology.

[14]  B. Jasperse,et al.  Oropharyngeal primary tumor segmentation for radiotherapy planning on magnetic resonance imaging using deep learning , 2021, Physics and imaging in radiation oncology.

[15]  Yajia Gu,et al.  Segmentation of whole breast and fibroglandular tissue using nnU-Net in dynamic contrast enhanced MR images. , 2021, Magnetic resonance imaging.

[16]  T. Wech,et al.  Self-configuring nnU-net pipeline enables fully automatic infarct segmentation in late enhancement MRI after myocardial infarction. , 2021, European journal of radiology.

[17]  E. Dale,et al.  Deep learning-based auto-delineation of gross tumour volumes and involved nodes in PET/CT images of head and neck cancer patients , 2021, European Journal of Nuclear Medicine and Molecular Imaging.

[18]  O. U. Aydin,et al.  On the usage of average Hausdorff distance for segmentation performance assessment: hidden error when used for ranking , 2021, European Radiology Experimental.

[19]  Erlend Hodneland,et al.  Automated segmentation of endometrial cancer on MR images using deep learning , 2021, Scientific Reports.

[20]  R. Savjani,et al.  nnU-Net: Further Automating Biomedical Image Autosegmentation. , 2021, Radiology. Imaging cancer.

[21]  Jens Petersen,et al.  nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation , 2020, Nature Methods.

[22]  M. Bock,et al.  Convolutional neural networks for head and neck tumor segmentation on 7-channel multiparametric MRI: a leave-one-out analysis , 2020, Radiation Oncology.

[23]  A. Demchuk,et al.  Semi-automatic measurement of intracranial hemorrhage growth on non-contrast CT , 2019, International journal of stroke : official journal of the International Stroke Society.

[24]  Xiaowei Ding,et al.  Embracing Imperfect Datasets: A Review of Deep Learning Solutions for Medical Image Segmentation , 2019, Medical Image Anal..

[25]  Clifton D Fuller,et al.  Deep Learning Algorithm for Auto-Delineation of High-Risk Oropharyngeal Clinical Target Volumes With Built-In Dice Similarity Coefficient Parameter Optimization Function. , 2018, International journal of radiation oncology, biology, physics.

[26]  C. Fuller,et al.  Large Interobserver Variation in the International MR-LINAC Oropharyngeal Carcinoma Delineation Study , 2017 .

[27]  Christopher Rorden,et al.  The first step for neuroimaging data analysis: DICOM to NIfTI conversion , 2016, Journal of Neuroscience Methods.

[28]  E. Genden,et al.  Oncologic Outcomes After Transoral Robotic Surgery: A Multi-institutional Study. , 2015, JAMA otolaryngology-- head & neck surgery.

[29]  A. Chattopadhyay,et al.  Oral cavity and oropharyngeal cancer incidence trends and disparities in the United States: 2000-2010. , 2015, Cancer epidemiology.

[30]  D. Rischin,et al.  What is the best treatment for patients with human papillomavirus–positive and –negative oropharyngeal cancer? , 2014, Cancer.

[31]  Walter R. Bosch,et al.  Multi-institutional trial of accelerated hypofractionated intensity-modulated radiation therapy for early-stage oropharyngeal cancer (RTOG 00-22). , 2010, International journal of radiation oncology, biology, physics.

[32]  L. R. Dice Measures of the Amount of Ecologic Association Between Species , 1945 .

[33]  K. Shiga,et al.  Differences between oral cancer and cancers of the pharynx and larynx on a molecular level. , 2012, Oncology letters.