How accurately can parameters from exponential models be estimated? A Bayesian view
暂无分享,去创建一个
[1] R. T. Cox,et al. The Algebra of Probable Inference , 1962 .
[2] P. Laplace. A Philosophical Essay On Probabilities , 1902 .
[3] R. Baierlein. Probability Theory: The Logic of Science , 2004 .
[4] G. L. Bretthorst,et al. Bayesian analysis. V : Amplitude estimation for multiple well-separated sinusoids , 1992 .
[5] H. Jeffreys,et al. Theory of probability , 1896 .
[6] A. Istratov,et al. Exponential analysis in physical phenomena , 1999 .
[7] T. Bayes,et al. Studies in the History of Probability and Statistics: IX. Thomas Bayes's Essay Towards Solving a Problem in the Doctrine of Chances , 1958 .
[8] G. L. Bretthorst. Bayesian analysis. I. Parameter estimation using quadrature NMR models , 1990 .
[9] T. Bayes. An essay towards solving a problem in the doctrine of chances , 2003 .
[10] G. Larry Bretthorst. Generalizing the Lomb-Scargle periodogram , 2001 .
[11] G. L. Bretthorst. Bayesian ANALYSIS. IV. Noise and computing time considerations , 1991 .
[12] G. Larry Bretthorst,et al. Bayesian analysis. II. Signal detection and model selection , 1990 .
[13] G. L. Bretthorst,et al. Site-specific thermodynamics and kinetics of a coiled-coil transition by spin inversion transfer NMR. , 1998, Biophysical journal.
[14] H. Cramér. Mathematical methods of statistics , 1947 .
[15] John Skilling,et al. Maximum Entropy and Bayesian Methods , 1989 .
[16] C. R. Rao,et al. Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .
[17] Kenneth Holmström,et al. A review of the parameter estimation problem of fitting positive exponential sums to empirical data , 2002, Appl. Math. Comput..
[18] G. L. Bretthorst,et al. Estimating the Ratio of Two Amplitudes in Nuclear Magnetic Resonance Data , 1992 .
[19] C. Ray Smith,et al. Maximum-entropy and Bayesian methods in science and engineering , 1988 .
[20] G. L. Bretthorst. Nonuniform sampling: Bandwidth and aliasing , 2001 .
[21] G. L. Bretthorst. Generalizing the Lomb-Scargle periodogram—the nonsinusoidal case , 2001 .
[22] G. Larry Bretthorst,et al. Bayesian analysis. III. Applications to NMR signal detection, model selection, and parameter estimation , 1990 .
[23] G. Bromage. A QUANTIFICATION OF THE HAZARDS OF FITTING SUMS OF EXPONENTIALS TO NOISY DATA , 1983 .
[24] R. Shrager,et al. Some pitfalls in curve-fitting and how to avoid them: a case in point. , 1998, Journal of Biochemical and Biophysical Methods.
[25] Probability Theory and Multiexponential Signals, How Accurately Can the Parameters be Determined? , 1996 .
[26] G. Barnard. STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS: IX. THOMAS BAYES'S ESSAY TOWARDS SOLVING A PROBLEM IN THE DOCTRINE OF CHANCESReproduced with the permission of the Council of the Royal Society from The Philosophical Transactions (1763), 53, 370-418 , 1958 .
[27] G. L. Bretthorst. AN INTRODUCTION TO MODEL SELECTION USING PROBABILITY THEORY AS LOGIC , 1996 .
[28] G. L. Bretthorst,et al. Thermodynamics and kinetics of a folded-folded' transition at valine-9 of a GCN4-like leucine zipper. , 1999, Biophysical journal.
[29] L. M. M.-T.. Theory of Probability , 1929, Nature.
[30] G. Larry Bretthorst,et al. Physics and Probability: On the Difference in Means , 1993 .
[31] G. L. Bretthorst,et al. AN INTRODUCTION TO PARAMETER ESTIMATION USING BAYESIAN PROBABILITY THEORY , 1990 .
[32] Marvin H. J. Guber. Bayesian Spectrum Analysis and Parameter Estimation , 1988 .
[33] G. L. Bretthorst,et al. Temperature dependence of the folding and unfolding kinetics of the GCN4 leucine zipper via 13C(alpha)-NMR. , 2001, Biophysical journal.
[34] A. Vecchio,et al. Bayesian bounds on parameter extraction accuracy for compact coalescing binary gravitational wave signals , 1997, gr-qc/9705064.