Quantitative relationship between structural orthorhombicity, shear modulus, and heat capacity anomaly of the nematic transition in iron-based superconductors

Authors: Joshua Javier Sanchez, Paul Malinowski, Jong-Woo Kim, Philip Ryan, Jiun-Haw Chu Affiliation: Department of Physics, University of Washington, Seattle, Washington 98195, USA. Advanced Photon Source, Argonne National Laboratories, Lemont, Illinois 60439, USA. School of Physical Sciences, Dublin City University, Dublin 9, Ireland. Present address: Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

[1]  S. Kivelson,et al.  Elastocaloric signature of nematic fluctuations , 2020, Proceedings of the National Academy of Sciences.

[2]  P. Hirschfeld,et al.  Nematicity and superconductivity: Competition versus cooperation , 2020 .

[3]  J. Chu,et al.  The transport–structural correspondence across the nematic phase transition probed by elasto X-ray diffraction , 2020, Nature Materials.

[4]  S. Kivelson,et al.  Nematic quantum criticality in an Fe-based superconductor revealed by strain-tuning , 2020, Science.

[5]  J. Chu,et al.  Suppression of superconductivity by anisotropic strain near a nematic quantum critical point , 2019, 1911.03390.

[6]  P. Walmsley,et al.  AC elastocaloric effect as a probe for thermodynamic signatures of continuous phase transitions. , 2019, The Review of scientific instruments.

[7]  D. M. Evans,et al.  Ferroelasticity, anelasticity and magnetoelastic relaxation in Co-doped iron pnictide: Ba(Fe0.957Co0.043)2As2 , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[8]  P. Walmsley,et al.  Elastoresistive and elastocaloric anomalies at magnetic and electronic-nematic critical points , 2018, Physical Review B.

[9]  H. Eisaki,et al.  Anisotropic Grüneisen Parameter and Diverse Order Parameter Fluctuations in Iron-Based Superconductor Ba(Fe1−xCox)2As2 , 2018, Journal of the Physical Society of Japan.

[10]  P. Walmsley,et al.  Symmetric and antisymmetric strain as continuous tuning parameters for electronic nematic order , 2018, Physical Review B.

[11]  N. Curro,et al.  Local nematic susceptibility in stressed BaFe 2 As 2 from NMR electric field gradient measurements , 2017, 1710.09547.

[12]  R. Fernandes,et al.  Magnetism, Superconductivity, and Spontaneous Orbital Order in Iron-Based Superconductors: Which Comes First and Why? , 2016, 1602.05503.

[13]  C. Meingast,et al.  Electronic nematic susceptibility of iron-based superconductors , 2015, 1505.05120.

[14]  J. Chu,et al.  Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors , 2015, Science.

[15]  T. Maier,et al.  Pairing interaction near a nematic quantum critical point of a three-band CuO2 model , 2014 .

[16]  E. Berg,et al.  Enhancement of superconductivity near a nematic quantum critical point. , 2014, Physical review letters.

[17]  J. Schmalian,et al.  What drives nematic order in iron-based superconductors? , 2014, Nature Physics.

[18]  W. Schranz,et al.  Nematic susceptibility of hole-doped and electron-doped BaFe2As2 iron-based superconductors from shear modulus measurements. , 2013, Physical review letters.

[19]  M. Cazayous,et al.  Observation of incipient charge nematicity in Ba(Fe(1-x)Co(x))2As2. , 2013, Physical review letters.

[20]  J. Chu,et al.  Divergent Nematic Susceptibility in an Iron Arsenide Superconductor , 2012, Science.

[21]  H. Eisaki,et al.  Structural Quantum Criticality and Superconductivity in Iron-Based Superconductor Ba(Fe1-xCox)2As2 , 2011, 1111.0366.

[22]  J. Knolle,et al.  Preemptive nematic order, pseudogap, and orbital order in the iron pnictides , 2011, 1110.1893.

[23]  R. Birgeneau,et al.  First- and second-order magnetic and structural transitions in BaFe2(1−x)Co2xAs2 , 2011, 1106.5761.

[24]  M. Akatsu,et al.  Quadrupole Effects of Layered Iron Pnictide Superconductor Ba(Fe0.9Co0.1)2As2 , 2011 .

[25]  H. Kontani,et al.  Origin of orthorhombic transition, magnetic transition, and shear-modulus softening in iron pnictide superconductors: Analysis based on the orbital fluctuations theory , 2011, 1103.3360.

[26]  Jong-Woo Kim,et al.  Character of the structural and magnetic phase transitions in the parent and electron-doped BaFe2As2 compounds , 2011, 1103.2752.

[27]  A. Cano,et al.  Interplay of magnetic and structural transitions in iron-based pnictide superconductors , 2010, 1004.4145.

[28]  S. Bhattacharya,et al.  Effects of nematic fluctuations on the elastic properties of iron arsenide superconductors. , 2009, Physical review letters.

[29]  Min Gyu Kim,et al.  Anomalous suppression of the orthorhombic lattice distortion in superconducting Ba(Fe1-xCox)2As2 single crystals. , 2009, Physical review letters.

[30]  Jiansheng Wu,et al.  Orbital ordering induces structural phase transition and the resistivity anomaly in iron pnictides , 2009, 0905.1704.

[31]  Wei Bao,et al.  Neutron-diffraction measurements of magnetic order and a structural transition in the parent BaFe2As2 compound of FeAs-based high-temperature superconductors. , 2008, Physical review letters.

[32]  C. Kucharczyk,et al.  Determination of the phase diagram of the electron-doped superconductor Ba(Fe 1-x Co x ) 2 As 2 , 2008, 0811.2463.

[33]  Jiangping Hu,et al.  Theory of electron nematic order in LaFeAsO , 2008, 0804.3843.

[34]  E. Salje Ferroelasticity , 2000 .

[35]  JAMES STUART,et al.  Magnetism , 1872, Nature.