Initiation of the Western Pacific Warm Pool at the Middle Miocene Climate Transition?

Across the middle Miocene, Earth's climate underwent a major cooling and expansion of the Antarctic ice sheet. However, the associated response and development of the tropical climate system is not fully understood, in part because this is influenced by both global climate and also low‐latitude tectonic gateways and paleoceanography. Here we use combined δ18O and Mg/Ca of planktic foraminifera to reconstruct the thermal history and changes in hydrology from the Indo‐Pacific region from 16.5 to 11.5 Ma. During the warmth of the early middle Miocene, our records indicate a dynamic ocean‐atmosphere system in the Indo‐Pacific region, with episodes of saltier and warmer tropical surface waters associated with high pCO2 and retreat of the Antarctic ice sheet. We show that across the Middle Miocene Climate Transition (MMCT) surface ocean temperatures in the Indo‐Pacific cooled by ~2°C, synchronous with the advance of the Antarctic ice sheet. The associated cooling in the Southern Ocean appears to have started earlier and was stronger. Further, we show that western Pacific Ocean warmed and eastern tropical Indian Ocean freshened following the MMCT, likely caused by the constriction of the Indonesian Seaway and reduced connectivity between the Pacific and Indian Oceans following Antarctic glaciation. The MMCT therefore represented a key phase in the evolution of the West Pacific Warm Pool and associated tropical climate dynamics.

[1]  S. Eggins,et al.  Constraining multiple controls on planktic foraminifera Mg/Ca , 2020 .

[2]  G. Foster,et al.  Ocean Carbon Storage across the middle Miocene: a new interpretation for the Monterey Event , 2020, Nature Communications.

[3]  N. Waldmann,et al.  Two-step closure of the Miocene Indian Ocean Gateway to the Mediterranean , 2019, Scientific Reports.

[4]  W. Gray,et al.  Nonthermal Influences on Mg/Ca in Planktonic Foraminifera: A Review of Culture Studies and Application to the Last Glacial Maximum , 2019, Paleoceanography and Paleoclimatology.

[5]  F. Sangiorgi,et al.  Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 3: Insights from Oligocene–Miocene TEX86-based sea surface temperature reconstructions , 2018, Climate of the Past.

[6]  P. Pearson,et al.  Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy , 2018, Earth and Planetary Science Letters.

[7]  R. McKay,et al.  Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 1: Insights from late Oligocene astronomically paced contourite sedimentation , 2018, Climate of the Past.

[8]  M. Huber,et al.  North Atlantic temperature and pCO2 coupling in the early-middle Miocene , 2018 .

[9]  P. Valdes,et al.  Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry , 2018, Proceedings of the National Academy of Sciences.

[10]  R. McKay,et al.  Southern Ocean warming and Wilkes Land ice sheet retreat during the mid-Miocene , 2018, Nature Communications.

[11]  K. Lawrence,et al.  A diatom record of CO 2 decline since the late Miocene , 2017 .

[12]  Gregory J. L. Tourte,et al.  The DeepMIP contribution to PMIP4 , 2017 .

[13]  T. Herbert,et al.  Late Miocene global cooling and the rise of modern ecosystems , 2016 .

[14]  I. Probert,et al.  Decrease in coccolithophore calcification and CO2 since the middle Miocene , 2016, Nature Communications.

[15]  R. DeConto,et al.  Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene , 2015, Proceedings of the National Academy of Sciences.

[16]  D. Lunt,et al.  Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry , 2015 .

[17]  P. Pearson,et al.  University of Birmingham Assessing the impact of diagenesis on 11B, 13C, 18O, Sr/Ca and B/Ca values in fossil planktic foraminiferal calcite , 2015 .

[18]  J. Erez,et al.  Revisiting carbonate chemistry controls on planktic foraminifera Mg / Ca: implications for sea surface temperature and hydrology shifts over the Paleocene–Eocene Thermal Maximum and Eocene–Oligocene Transition , 2015 .

[19]  D. Schrag,et al.  Fossil corals as an archive of secular variations in seawater chemistry since the Mesozoic , 2015 .

[20]  P. Pearson,et al.  Fossil and Genetic Evidence for the Polyphyletic Nature of the Planktonic Foraminifera "Globigerinoides", and Description of the New Genus Trilobatus , 2015, PloS one.

[21]  G. Foster,et al.  Middle Miocene climate instability associated with high‐amplitude CO2 variability , 2014 .

[22]  Zhonghui Liu,et al.  A 12-Million-Year Temperature History of the Tropical Pacific Ocean , 2014, Science.

[23]  W. Kuhnt,et al.  Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling , 2013 .

[24]  G. Ramstein,et al.  The role of eastern Tethys seaway closure in the Middle Miocene Climatic Transition (ca. 14 Ma) , 2013 .

[25]  P. deMenocal,et al.  The Influence of Salinity on Mg/Ca in Planktic Foraminifers – Evidence from Cultures, Core-top Sediments and Complementary δ18O , 2013 .

[26]  T. Lowenstein,et al.  The major-ion composition of Cenozoic seawater: The past 36 million years from fluid inclusions in marine halite , 2013, American Journal of Science.

[27]  R. Pancost,et al.  CO2 drawdown following the middle Miocene expansion of the Antarctic Ice Sheet , 2013 .

[28]  M. Frank,et al.  Changes in Pacific Ocean circulation following the Miocene onset of permanent Antarctic ice cover , 2013 .

[29]  A. Eisenhauer,et al.  Calcium carbonate veins in ocean crust record a threefold increase of seawater Mg/Ca in the past 30 million years , 2013 .

[30]  D. Schrag,et al.  Records of Neogene seawater chemistry and diagenesis in deep-sea carbonate sediments and pore fluids , 2012 .

[31]  W. Müller,et al.  Deep time foraminifera Mg/Ca paleothermometry: Nonlinear correction for secular change in seawater Mg/Ca , 2012 .

[32]  G. Foster,et al.  The evolution of pCO2, ice volume and climate during the middle Miocene , 2012 .

[33]  J. Jungclaus,et al.  The Middle Miocene climate as modelled in an atmosphere-ocean-biosphere model , 2011 .

[34]  R. Leckie,et al.  Timing and magnitude of Miocene eustasy derived from the mixed siliciclastic-carbonate stratigraphic record of the northeastern Australian margin , 2011 .

[35]  Timothy T. Barrows,et al.  The behaviour of the Leeuwin Current offshore NW Australia during the last five glacial–interglacial cycles , 2011 .

[36]  Y. Rosenthal,et al.  Cenozoic benthic foraminiferal Mg/Ca and Li/Ca records: Toward unlocking temperatures and saturation states , 2010 .

[37]  F. Hasiuk,et al.  Application of calcite Mg partitioning functions to the reconstruction of paleocean Mg/Ca , 2010 .

[38]  M. Schulz,et al.  Does Antarctic glaciation force migration of the tropical rain belt , 2010 .

[39]  R. Coggon,et al.  Reconstructing Past Seawater Mg/Ca and Sr/Ca from Mid-Ocean Ridge Flank Calcium Carbonate Veins , 2010, Science.

[40]  S. Bohaty,et al.  Surface-water cooling and salinity decrease during the Middle Miocene climate transition at Southern Ocean ODP Site 747 (Kerguelen Plateau) , 2010 .

[41]  A. Tripati,et al.  Coupling of CO2 and Ice Sheet Stability Over Major Climate Transitions of the Last 20 Million Years , 2009, Science.

[42]  G. Reichart,et al.  Effect of salinity and seawater calcite saturation state on Mg and Sr incorporation in cultured planktonic foraminifera , 2009 .

[43]  T. Bickert,et al.  Southern Ocean frontal system changes precede Antarctic ice sheet growth during the middle Miocene , 2009 .

[44]  M. Schulz,et al.  Modeling planktonic foraminiferal seasonality: Implications for sea-surface temperature reconstructions , 2009 .

[45]  R. Müller,et al.  Climate model sensitivity to atmospheric CO2 concentrations for the middle Miocene , 2009 .

[46]  R. Leckie,et al.  Early history of the Western Pacific Warm Pool during the middle to late Miocene (~ 13.2–5.8 Ma): Role of sea-level change and implications for equatorial circulation , 2009 .

[47]  C. Li,et al.  Neogene history of the West Pacific Warm Pool, Kuroshio and Leeuwin currents , 2009 .

[48]  R. Tiedemann,et al.  Calibrating Mg/Ca ratios of multiple planktonic foraminiferal species with δ 18 O-calcification temperatures: Paleothermometry for the upper water column , 2009 .

[49]  J. Erez,et al.  Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber (white) , 2008 .

[50]  J. Duplessy,et al.  Mg/Ca and Sr/Ca ratios in planktonic foraminifera: Proxies for upper water column temperature reconstruction , 2008, Paleoceanography.

[51]  L. Meynadier,et al.  Tectonically driven changes in the Indian Ocean circulation over the last 25 Ma: Neodymium isotope evidence , 2008 .

[52]  A. Ashworth,et al.  Major middle Miocene global climate change: Evidence from East Antarctica and the Transantarctic Mountains , 2007 .

[53]  E. Rohling Progress in paleosalinity: Overview and presentation of a new approach , 2007 .

[54]  Matthias Tomczak,et al.  Simulated Lagrangian pathways between the Leeuwin Current System and the upper-ocean circulation of the southeast Indian Ocean , 2007 .

[55]  P. Pearson,et al.  Microstructural and geochemical perspectives on planktic foraminiferal preservation: “Glassy” versus “Frosty” , 2006 .

[56]  D. DePaolo,et al.  Sr isotopes and pore fluid chemistry in carbonate sediment of the Ontong Java Plateau: Calcite recrystallization rates and evidence for a rapid rise in seawater Mg over the last 10 million years , 2006 .

[57]  D. Garbe‐Schönberg,et al.  Assessing the effect of dissolution on planktonic foraminiferal Mg/Ca ratios: Evidence from Caribbean core tops , 2006 .

[58]  M. Wara,et al.  Permanent El Niño-Like Conditions During the Pliocene Warm Period , 2005, Science.

[59]  C. Bitz,et al.  Influence of high latitude ice cover on the marine Intertropical Convergence Zone , 2005 .

[60]  Richard A. Feely,et al.  A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP) , 2004 .

[61]  P. Pearson,et al.  Miocene tropical Indian Ocean temperatures: evidence from three exceptionally preserved foraminiferal assemblages from Tanzania , 2004 .

[62]  D. Lea,et al.  Middle Miocene Southern Ocean Cooling and Antarctic Cryosphere Expansion , 2004, Science.

[63]  W. Kuhnt,et al.  Middle Miocene isotope stratigraphy and paleoceanographic evolution of the northwest and southwest Australian margins (Wombat Plateau and Great Australian Bight) , 2004 .

[64]  A. Shevenell,et al.  Paleoceanographic Change During the Middle Miocene Climate Revolution: An Antarctic Stable Isotope Perspective , 2004 .

[65]  H. Elderfield,et al.  A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry , 2003 .

[66]  J. Sprintall,et al.  Temperature and salinity variability in the exit passages of the Indonesian Throughflow , 2003 .

[67]  Henry Elderfield,et al.  Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series , 2003 .

[68]  L. Sloan,et al.  Climate model sensitivity to atmospheric CO2 levels in the Early–Middle Paleogene , 2003 .

[69]  J. Dickson Fossil Echinoderms As Monitor of the Mg/Ca Ratio of Phanerozoic Oceans , 2002, Science.

[70]  J. Horita,et al.  Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites , 2002 .

[71]  Niall C. Slowey,et al.  Benthic foraminiferal Mg/Ca-paleothermometry: a revised core-top calibration , 2002 .

[72]  G. P. Lohmann,et al.  Accurate estimation of sea surface temperatures using dissolution‐corrected calibrations for Mg/Ca paleothermometry , 2002 .

[73]  D. Lea,et al.  Core top calibration of Mg/Ca in tropical foraminifera: Refining paleotemperature estimation , 2002 .

[74]  R. Hall Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations , 2002 .

[75]  Christopher J. Nicholas,et al.  Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs , 2001, Nature.

[76]  E. Schneider,et al.  The Indonesian Throughflow's Effect on Global Climate Determined from the COLA Coupled Climate System , 2001 .

[77]  H. Elderfield,et al.  Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios , 2000, Nature.

[78]  H. Veeh,et al.  Glacial/interglacial variations of sedimentation on the West Australian continental margin: constraints from excess 230 Th , 2000 .

[79]  H. Elderfield,et al.  Cenozoic deep-Sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite , 2000, Science.

[80]  D. Lea,et al.  Glacial–interglacial changes in Subantarctic sea surface temperature and δ18O-water using foraminiferal Mg , 1999 .

[81]  Jelle Bijma,et al.  Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations , 1998 .

[82]  N. Schneider,et al.  The Indonesian Throughflow and the Global Climate System , 1998 .

[83]  D. Wallace,et al.  Program developed for CO{sub 2} system calculations , 1998 .

[84]  D. McKirdy,et al.  Biogeographic impact of the Leeuwin Current in southern Australia since the late middle Eocene , 1997 .

[85]  A. Gordon,et al.  Pathways of water between the Pacific and Indian oceans in the Indonesian seas , 1996, Nature.

[86]  L. Fieser,et al.  Calcium carbonate , 2018, Reactions Weekly.

[87]  R. Norris,et al.  Evolution of depth ecology in the planktic foraminifera lineage Globorotalia (Fohsella) , 1993 .

[88]  J. Kennett,et al.  Vertical thermal structure evolution of Miocene surface waters: Western equatorial Pacific DSDP Site 289 , 1993 .

[89]  W. Chaisson,et al.  High-Resolution Neogene Planktonic Foraminifer Biostratigraphy of Site 806, Ontong Java Plateau (Western Equatorial Pacific) , 1993 .

[90]  L. Gahagan,et al.  Plate tectonic reconstructions of the Cretaceous and Cenozoic ocean basins , 1988 .

[91]  E. Boyle,et al.  Li, Sr, Mg, and Na in foraminiferal calcite shells from laboratory culture, sediment traps, and sediment cores , 1985 .

[92]  M. Bender,et al.  Tracers in the Sea , 1984 .

[93]  A. Dickson On Evolution , 1884, Science.

[94]  M. Rafélis,et al.  Changes in sea-surface conditions in the Equatorial Pacific during the middle Miocene–Pliocene as inferred from coccolith geochemistry , 2013 .

[95]  G. Ramstein,et al.  The role of eastern Tethys seaway closure in the Middle Miocene Climatic Transition ( ca . 14 Ma ) , 2013 .

[96]  R. Hall,et al.  The SE Asian gateway: history and tectonics of the Australia–Asia collision , 2011 .

[97]  H. Dijkstra,et al.  The impact of ocean gateways on ENSO variability in the Miocene , 2011 .

[98]  C. Pattiaratchi,et al.  The mean state of the Leeuwin Current system between North West Cape and Cape Leeuwin , 2009 .

[99]  Guangshan Chen,et al.  The palaeoceanography of the Leeuwin Current : implications for a future world , 2009 .

[100]  G. H. Scott,et al.  East Antarctic Ice Sheet fluctuations during the Middle Miocene Climatic Transition inferred from faunal and biogeochemical data on planktonic foraminifera (ODP Hole 747A, Kerguelen Plateau) , 2007 .

[101]  R. Schlitzer Ocean Data View , 2007 .

[102]  W. Zachariasse NEOGENE PLANKTONIC FORAMINIFERS FROM SITES 761 AND 762 OFF NORTHWEST AUSTRALIA , 2006 .

[103]  R. Käse,et al.  Neogene History of the Indonesian Throughflow , 2004 .

[104]  Pinxian Wang,et al.  Continent-Ocean Interactions Within East Asian Marginal Seas , 2004 .

[105]  K. Koltermann,et al.  WOCE Global Hydrographic Climatology , 2004 .

[106]  J. Sprintall,et al.  The JADE and WOCE I10/IR6 Throughflow sections in the southeast Indian Ocean. Part 2: velocity and transports , 2002 .

[107]  J. Sprintall,et al.  The JADE and WOCE I10/IR6 Throughflow sections in the southeast Indian Ocean. Part 1: water mass distribution and variability , 2002 .

[108]  Robert Hall,et al.  Reconstructing Cenozoic SE Asia , 1996, Geological Society, London, Special Publications.

[109]  P. Pearson Planktonic foraminifer biostratigraphy and the development of pelagic caps on guyots in the Marshall Islands Group , 1995 .

[110]  Marie-Pierre Aubry,et al.  A revised Cenozoic geochronology and chronostratigraphy , 1995 .

[111]  C. Murphy,et al.  The depth of the ocean through the Neogene , 1985 .

[112]  G. Keller,et al.  The evolution of Miocene surface and near-surface marine temperatures: Oxygen isotopic evidence , 1985 .

[113]  M. Srinivasan,et al.  Miocene planktonic foraminiferal biogeography and paleoceanographic development of the Indo-Pacific region , 1985 .

[114]  W. Berggren,et al.  Neogene planktonic foraminifera: A phylogenetic atlas , 1983 .