A fractional Gabor expansion

We present a fractional Gabor expansion on a non-rectangular time–frequency lattice. Sinusoidal analysis used in the traditional Gabor expansion is not appropriate for a compact representation for chirp-type signals. Basis functions of the proposed expansion are obtained via fractional Fourier basis. Completeness and biorthogonality conditions of the new expansion are derived.

[1]  M. Bastiaans,et al.  From the rectangular to the quincunx Gabor lattice via fractional Fourier transformation , 1998, IEEE Signal Processing Letters.

[2]  Soo-Chang Pei,et al.  Fractional Fourier series expansion for finite signals and dual extension to discrete-time fractional Fourier transform , 1999, IEEE Trans. Signal Process..

[3]  A. Alcan,et al.  Signal-adaptive evolutionary spectral analysis using instantaneous frequency estimation , 1998, Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380).

[4]  Aykut Bultan A four-parameter atomic decomposition of chirplets , 1999, IEEE Trans. Signal Process..

[5]  Khaled H. Hamed,et al.  Time-frequency analysis , 2003 .

[6]  Aydin Akan,et al.  Multi-window Gabor expansion for evolutionary spectral analysis , 1997, Signal Process..

[7]  Luís B. Almeida,et al.  The fractional Fourier transform and time-frequency representations , 1994, IEEE Trans. Signal Process..

[8]  Martin J. Bastiaans,et al.  Gabor's signal expansion and the Gabor transform on a non-separable time-frequency lattice , 2000, J. Frankl. Inst..

[9]  Douglas L. Jones,et al.  A high resolution data-adaptive time-frequency representation , 1990, IEEE Trans. Acoust. Speech Signal Process..

[10]  Dennis Gabor,et al.  Theory of communication , 1946 .

[11]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[12]  Douglas L. Jones,et al.  Shear madness: new orthonormal bases and frames using chirp functions , 1993, IEEE Trans. Signal Process..

[13]  Aydin Akan,et al.  Evolutionary chirp representation of non-stationary signals via Gabor transform , 2001, Signal Process..

[14]  Jason Wexler,et al.  Discrete Gabor expansions , 1990, Signal Process..