Automatic Facial Expression Analysis

Automatic Facial Expression Recognition systems have come a long way since the earliest approaches in the early 1970s. We are now at a point where the earliest systems are commercially applied, most notably the smile detectors in digital cameras. But although facial expression recognition is maturing as a research field, it is far from finished. New techniques continue to be developed on all aspects of the processing pipeline: from face detection, via feature extraction to machine learning. Nor is the field blind to the progress made in the social sciences with respect to emotion theory. Gone are the days that people only tried to detect six discrete expressions that were turned-on or off like the switching of lights. The theory of Social Signal Processing now complements classical emotion theory, and modern approaches dissect an expression into its temporal phases, analyse intensity, symmetry, micro-expressions and dynamic differences between morphologically similar expressions. Brave new worlds are opened up—Automatic Facial Expression Analysis is poised to revolutionalise medicine with the advent of behaviomedics, gaming with enriched player–non-player interactions, teleconference meetings with automatic trust and engagement analysis, and human–robot interaction with robots displaying actual empathy.

[1]  Ya Li,et al.  The CASIA Audio Emotion Recognition Method for Audio/Visual Emotion Challenge 2011 , 2011, ACII.

[2]  Daniel McDuff,et al.  Real-time inference of mental states from facial expressions and upper body gestures , 2011, Face and Gesture 2011.

[3]  Zhen Li,et al.  Emotion recognition from an ensemble of features , 2011, Face and Gesture 2011.

[4]  Catherine Pelachaud,et al.  A multimodal fuzzy inference system using a continuous facial expression representation for emotion detection , 2012, ICMI '12.

[5]  Jean Meunier,et al.  Emotion recognition using dynamic grid-based HoG features , 2011, Face and Gesture 2011.

[6]  Maja Pantic,et al.  Detecting facial actions and their temporal segments in nearly frontal-view face image sequences , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[7]  Qiang Ji,et al.  A Unified Probabilistic Framework for Spontaneous Facial Action Modeling and Understanding , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Sridha Sridharan,et al.  Automatically Detecting Pain in Video Through Facial Action Units , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[9]  Fernando De la Torre,et al.  Selective Transfer Machine for Personalized Facial Action Unit Detection , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Maja Pantic,et al.  Automatic Analysis of Facial Expressions: The State of the Art , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Hazim Kemal Ekenel,et al.  Facial action unit detection using kernel partial least squares , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[12]  Mohamed Chetouani,et al.  Robust continuous prediction of human emotions using multiscale dynamic cues , 2012, ICMI '12.

[13]  Arman Savran,et al.  Comparative evaluation of 3D vs. 2D modality for automatic detection of facial action units , 2012, Pattern Recognit..

[14]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[15]  Beat Fasel,et al.  Recognition of asymmetric facial action unit activities and intensities , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[16]  Bir Bhanu,et al.  A Psychologically-Inspired Match-Score Fusion Model for Video-Based Facial Expression Recognition , 2011, ACII.

[17]  Nadia Bianchi-Berthouze,et al.  Naturalistic Affective Expression Classification by a Multi-stage Approach Based on Hidden Markov Models , 2011, ACII.

[18]  Maja Pantic,et al.  A Dynamic Appearance Descriptor Approach to Facial Actions Temporal Modeling , 2014, IEEE Transactions on Cybernetics.

[19]  Qingshan Liu,et al.  Dynamic soft encoded patterns for facial event analysis , 2011, Comput. Vis. Image Underst..

[20]  Roddy Cowie,et al.  FEELTRACE: an instrument for recording perceived emotion in real time , 2000 .

[21]  Sridha Sridharan,et al.  Person-independent facial expression detection using Constrained Local Models , 2011, Face and Gesture 2011.

[22]  Maja Pantic,et al.  Action unit detection using sparse appearance descriptors in space-time video volumes , 2011, Face and Gesture 2011.

[23]  Jeffrey F. Cohn,et al.  The Timing of Facial Motion in posed and Spontaneous Smiles , 2003, Int. J. Wavelets Multiresolution Inf. Process..

[24]  M. V. Lamar,et al.  Recognizing facial actions using Gabor wavelets with neutral face average difference , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[25]  Shang-Hong Lai,et al.  Learning partially-observed hidden conditional random fields for facial expression recognition , 2009, CVPR.

[26]  Jacob Whitehill,et al.  Haar features for FACS AU recognition , 2006, 7th International Conference on Automatic Face and Gesture Recognition (FGR06).

[27]  Fernando De la Torre,et al.  Temporal Segmentation of Facial Behavior , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[28]  Terry Windeatt,et al.  Facial Action Unit Recognition Using Filtered Local Binary Pattern Features with Bootstrapped and Weighted ECOC Classifiers , 2011, Ensembles in Machine Learning Applications.

[29]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Michael J. Lyons,et al.  Coding facial expressions with Gabor wavelets , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[31]  Gerald M. Knapp,et al.  Dimensionality Reduction and Classification Analysis on the Audio Section of the SEMAINE Database , 2011, ACII.

[32]  Jean Meunier,et al.  Continuous Emotion Recognition Using Gabor Energy Filters , 2011, ACII.

[33]  Zhu Liang Yu,et al.  Speech Emotion Recognition System Based on L1 Regularized Linear Regression and Decision Fusion , 2011, ACII.

[34]  Di Huang,et al.  Local Binary Patterns and Its Application to Facial Image Analysis: A Survey , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[35]  Takeo Kanade,et al.  Recognizing Action Units for Facial Expression Analysis , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Gwen Littlewort,et al.  Automatic Recognition of Facial Actions in Spontaneous Expressions , 2006, J. Multim..

[37]  K. Scherer,et al.  Introducing the Geneva Multimodal Emotion Portrayal (GEMEP) corpus , 2010 .

[38]  Günther Palm,et al.  Multiple classifier combination using reject options and markov fusion networks , 2012, ICMI '12.

[39]  Hichem Sahli,et al.  Context-Independent Facial Action Unit Recognition Using Shape and Gabor Phase Information , 2011, ACII.

[40]  Beat Fasel,et al.  Automati Fa ial Expression Analysis: A Survey , 1999 .

[41]  Maja Pantic,et al.  Empirical analysis of cascade deformable models for multi-view face detection , 2013, Image Vis. Comput..

[42]  Arman Savran,et al.  Regression-based intensity estimation of facial action units , 2012, Image Vis. Comput..

[43]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[44]  Maja Pantic,et al.  A Dynamic Texture-Based Approach to Recognition of Facial Actions and Their Temporal Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Maja Pantic,et al.  Spontaneous vs. posed facial behavior: automatic analysis of brow actions , 2006, ICMI '06.

[46]  Björn W. Schuller,et al.  AVEC 2012: the continuous audio/visual emotion challenge , 2012, ICMI '12.

[47]  N. Ahmed,et al.  Discrete Cosine Transform , 1996 .

[48]  Ashok Samal,et al.  Automatic recognition and analysis of human faces and facial expressions: a survey , 1992, Pattern Recognit..

[49]  Gwen Littlewort,et al.  Automatic coding of facial expressions displayed during posed and genuine pain , 2009, Image Vis. Comput..

[50]  Vladimir Pavlovic,et al.  Kernel Conditional Ordinal Random Fields for Temporal Segmentation of Facial Action Units , 2012, ECCV Workshops.

[51]  Peter H. Tu,et al.  Learning person-specific models for facial expression and action unit recognition , 2013, Pattern Recognit. Lett..

[52]  Maja Pantic,et al.  Fully Automatic Recognition of the Temporal Phases of Facial Actions , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[53]  Maja Pantic,et al.  Continuous Pain Intensity Estimation from Facial Expressions , 2012, ISVC.

[54]  Björn W. Schuller,et al.  Emotion representation, analysis and synthesis in continuous space: A survey , 2011, Face and Gesture 2011.

[55]  Hatice Gunes,et al.  How to distinguish posed from spontaneous smiles using geometric features , 2007, ICMI '07.

[56]  Daniel S. Messinger,et al.  A framework for automated measurement of the intensity of non-posed Facial Action Units , 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[57]  Mark A. Clements,et al.  Investigating the Use of Formant Based Features for Detection of Affective Dimensions in Speech , 2011, ACII.

[58]  Sridha Sridharan,et al.  In the Pursuit of Effective Affective Computing: The Relationship Between Features and Registration , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[59]  Laurens van der Maaten Audio-visual emotion challenge 2012: a simple approach , 2012, ICMI '12.

[60]  Maja Pantic,et al.  The first facial expression recognition and analysis challenge , 2011, Face and Gesture 2011.

[61]  R. Gur,et al.  Automated Facial Action Coding System for dynamic analysis of facial expressions in neuropsychiatric disorders , 2011, Journal of Neuroscience Methods.

[62]  Elliot Moore,et al.  Investigating Glottal Parameters and Teager Energy Operators in Emotion Recognition , 2011, ACII.

[63]  Lionel Prevost,et al.  Combining AAM coefficients with LGBP histograms in the multi-kernel SVM framework to detect facial action units , 2011, Face and Gesture 2011.

[64]  Louis-Philippe Morency,et al.  Step-wise emotion recognition using concatenated-HMM , 2012, ICMI '12.

[65]  Ville Ojansivu,et al.  Blur Insensitive Texture Classification Using Local Phase Quantization , 2008, ICISP.

[66]  Andrew McCallum,et al.  Maximum Entropy Markov Models for Information Extraction and Segmentation , 2000, ICML.

[67]  Maja Pantic,et al.  Meta-Analysis of the First Facial Expression Recognition Challenge , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[68]  Tom Rodden,et al.  Doing innovation in the wild , 2013, CHItaly '13.

[69]  Zhihong Zeng,et al.  A Survey of Affect Recognition Methods: Audio, Visual, and Spontaneous Expressions , 2009, IEEE Trans. Pattern Anal. Mach. Intell..

[70]  Marian Stewart Bartlett,et al.  Action unit recognition transfer across datasets , 2011, Face and Gesture 2011.

[71]  Maja Pantic,et al.  Local Evidence Aggregation for Regression-Based Facial Point Detection , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[72]  Tsuhan Chen,et al.  Reinterpreting the Application of Gabor Filters as a Manipulation of the Margin in Linear Support Vector Machines , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[73]  Maja Pantic,et al.  Dynamics of facial expression: recognition of facial actions and their temporal segments from face profile image sequences , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[74]  Zhengyou Zhang,et al.  A Survey of Recent Advances in Face Detection , 2010 .

[75]  Michel F. Valstar,et al.  Distribution-based iterative pairwise classification of emotions in the wild using LGBP-TOP , 2013, ICMI '13.

[76]  Björn W. Schuller,et al.  AVEC 2011-The First International Audio/Visual Emotion Challenge , 2011, ACII.

[77]  Nadia Bianchi-Berthouze,et al.  Emotion recognition by two view SVM_2K classifier on dynamic facial expression features , 2011, Face and Gesture 2011.

[78]  J. Cohn,et al.  Deciphering the Enigmatic Face , 2005, Psychological science.

[79]  Takeo Kanade,et al.  Comprehensive database for facial expression analysis , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[80]  Matti Pietikäinen,et al.  Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[81]  Jing Xiao,et al.  Automatic analysis and recognition of brow actions and head motion in spontaneous facial behavior , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[82]  Qiang Ji,et al.  Active Image Labeling and Its Application to Facial Action Labeling , 2008, ECCV.

[83]  András Lörincz,et al.  3D shape estimation in video sequences provides high precision evaluation of facial expressions , 2012, Image Vis. Comput..

[84]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[85]  Björn W. Schuller,et al.  AVEC 2013: the continuous audio/visual emotion and depression recognition challenge , 2013, AVEC@ACM Multimedia.

[86]  Yvonne Rogers,et al.  Interaction design gone wild: striving for wild theory , 2011, INTR.

[87]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[88]  Qingshan Liu,et al.  Boosting encoded dynamic features for facial expression recognition , 2009, Pattern Recognit. Lett..

[89]  Deva Ramanan,et al.  Face detection, pose estimation, and landmark localization in the wild , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[90]  Tomaso A. Poggio,et al.  A general framework for object detection , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[91]  Arman Savran,et al.  Combining video, audio and lexical indicators of affect in spontaneous conversation via particle filtering , 2012, ICMI '12.

[92]  Dirk Heylen,et al.  The Sensitive Artificial Listner: an induction technique for generating emotionally coloured conversation , 2008 .

[93]  Louis-Philippe Morency,et al.  Modeling Latent Discriminative Dynamic of Multi-dimensional Affective Signals , 2011, ACII.

[94]  Mohammad H. Mahoor,et al.  Facial action unit recognition with sparse representation , 2011, Face and Gesture 2011.

[95]  Fernando De la Torre,et al.  Unsupervised discovery of facial events , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[96]  Michel F. Valstar,et al.  Local Gabor Binary Patterns from Three Orthogonal Planes for Automatic Facial Expression Recognition , 2013, 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction.

[97]  Qiang Ji,et al.  Data-Free Prior Model for Facial Action Unit Recognition , 2013, IEEE Transactions on Affective Computing.

[98]  Mohammad T. Manzuri Shalmani,et al.  Recognizing Combinations of Facial Action Units with Different Intensity Using a Mixture of Hidden Markov Models and Neural Network , 2010, MCS.

[99]  Markus Kächele,et al.  Multiple Classifier Systems for the Classification of Audio-Visual Emotional States , 2011, ACII.

[100]  Shaogang Gong,et al.  Facial expression recognition based on Local Binary Patterns: A comprehensive study , 2009, Image Vis. Comput..

[101]  Dirk Heylen,et al.  Bridging the Gap between Social Animal and Unsocial Machine: A Survey of Social Signal Processing , 2012, IEEE Transactions on Affective Computing.

[102]  K. Scherer,et al.  The World of Emotions is not Two-Dimensional , 2007, Psychological science.

[103]  Takeo Kanade,et al.  Evaluation of Gabor-wavelet-based facial action unit recognition in image sequences of increasing complexity , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[104]  Emile A. Hendriks,et al.  Action unit classification using active appearance models and conditional random fields , 2011, Cognitive Processing.

[105]  Maja Pantic,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING , 2022 .

[106]  Qiang Ji,et al.  Facial Action Unit Recognition by Exploiting Their Dynamic and Semantic Relationships , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[107]  Fakhri Karray,et al.  Elastic net for paralinguistic speech recognition , 2012, ICMI '12.

[108]  Marian Stewart Bartlett,et al.  Classifying Facial Actions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[109]  Maja Pantic,et al.  Temporal modeling of facial actions from face profile image sequences , 2004, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763).

[110]  Fakhri Karray,et al.  Audio-Based Emotion Recognition from Natural Conversations Based on Co-Occurrence Matrix and Frequency Domain Energy Distribution Features , 2011, ACII.

[111]  Simon Lucey,et al.  Deformable Model Fitting by Regularized Landmark Mean-Shift , 2010, International Journal of Computer Vision.

[112]  Michel F. Valstar,et al.  Guided Unsupervised Learning of Mode Specific Models for Facial Point Detection in the Wild , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[113]  Fernando De la Torre,et al.  Dynamic Cascades with Bidirectional Bootstrapping for Action Unit Detection in Spontaneous Facial Behavior , 2011, IEEE Transactions on Affective Computing.

[114]  Fernando De la Torre,et al.  Continuous AU intensity estimation using localized, sparse facial feature space , 2013, 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG).