Effect of progressively increasing lithium conditioning on edge transport and stability in high triangularity NSTX H-modes

[1]  T. Osborne,et al.  High frequency pacing of edge localized modes by injection of lithium granules in DIII-D H-mode discharges , 2016 .

[2]  Qingxi Yang,et al.  First results of the use of a continuously flowing lithium limiter in high performance discharges in the EAST device , 2016 .

[3]  R. Bell,et al.  Dependence of recycling and edge profiles on lithium evaporation in high triangularity, high performance NSTX H-mode discharges , 2015 .

[4]  T. H. Osborne,et al.  Enhanced H-mode pedestals with lithium injection in DIII-D , 2015 .

[5]  R. Maingi,et al.  New steady-state quiescent high-confinement plasma in an experimental advanced superconducting tokamak. , 2015, Physical review letters.

[6]  Francisco L. Tabarés,et al.  Present status of liquid metal research for a fusion reactor , 2015 .

[7]  K. Tritz,et al.  High performance discharges in the Lithium Tokamak eXperiment with liquid lithium wallsa) , 2014 .

[8]  R. Bell,et al.  Edge microstability of NSTX plasmas without and with lithium-coated plasma-facing components , 2013 .

[9]  P. Parks,et al.  First observations of ELM triggering by injected lithium granules in EAST , 2013 .

[10]  R. Andre,et al.  Core transport of lithium and carbon in ELM-free discharges with lithium wall conditioning in NSTX , 2013 .

[11]  R. Bell,et al.  Liquid lithium divertor characteristics and plasma–material interactions in NSTX high-performance plasmas , 2013 .

[12]  J. Manickam,et al.  The effect of progressively increasing lithium coatings on plasma discharge characteristics, transport, edge profiles and ELM stability in the National Spherical Torus Experiment , 2012 .

[13]  R. Zagórski,et al.  Lithization of the FTU tokamak with a critical amount of lithium injection , 2012 .

[14]  R. Bell,et al.  Continuous improvement of H-mode discharge performance with progressively increasing lithium coatings in the National Spherical Torus Experiment. , 2011, Physical review letters.

[15]  J. Manickam,et al.  The relationships between edge localized modes suppression, pedestal profiles and lithium wall coatings in NSTX , 2011 .

[16]  C. Neumeyer,et al.  Overview of the physics and engineering design of NSTX upgrade , 2011, 2011 IEEE/NPSS 24th Symposium on Fusion Engineering.

[17]  R. Bell,et al.  Edge transport and turbulence reduction with lithium coated plasma facing components in the National Spherical Torus Experiment a) , 2011 .

[18]  J. Timberlake,et al.  A Simple Apparatus for the Injection of Lithium Aerosol into the Scrape-Off Layer of Fusion Research Devices , 2010 .

[19]  L. Zakharov,et al.  Plasma response to lithium-coated plasma-facing components in the National Spherical Torus Experiment , 2009 .

[20]  D K Mansfield,et al.  Edge-localized-mode suppression through density-profile modification with lithium-wall coatings in the National Spherical Torus Experiment. , 2009, Physical review letters.

[21]  J. Ferreira,et al.  Plasma performance and confinement in the TJ-II stellarator with lithium-coated walls , 2008 .

[22]  M. Ono,et al.  The effect of lithium surface coatings on plasma performance in the National Spherical Torus Experiment , 2008 .

[23]  V. Soukhanovskii,et al.  High Resolution Spectroscopic Diagnostic for Divertor and Scrape-off Layer Neutral and Impurity Emission Measurements in the National Spherical Torus Experiment , 2003 .

[24]  R. Budny,et al.  Observations Concerning the Injection of a Lithium Aerosol into the Edge of TFTR Discharges , 2000 .

[25]  O. Naito,et al.  ITER L mode confinement database , 1997 .

[26]  P. Stangeby,et al.  Experimental divertor physics , 1997 .