Asymptotic Normality of Posterior Distributions for Exponential Families when the Number of Parameters Tends to Infinity

We study consistency and asymptotic normality of posterior distributions of the natural parameter for an exponential family when the dimension of the parameter grows with the sample size. Under certain growth restrictions on the dimension, we show that the posterior distributions concentrate in neighbourhoods of the true parameter and can be approximated by an appropriate normal distribution.

[1]  C. T. Rajagopal Some limit theorems , 1948 .

[2]  Le Cam,et al.  On some asymptotic properties of maximum likelihood estimates and related Bayes' estimates , 1953 .

[3]  P. Bickel,et al.  Some contributions to the asymptotic theory of Bayes solutions , 1969 .

[4]  Richard A. Johnson Asymptotic Expansions Associated with Posterior Distributions , 1970 .

[5]  G. Kallianpur,et al.  The Bernstein-Von Mises theorem for Markov processes , 1971 .

[6]  Robert H. Berk,et al.  Consistency and Asymptotic Normality of MLE's for Exponential Models , 1972 .

[7]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[8]  Shelby J. Haberman,et al.  Maximum Likelihood Estimates in Exponential Response Models , 1977 .

[9]  S. Portnoy Asymptotic Behavior of $M$-Estimators of $p$ Regression Parameters when $p^2/n$ is Large. I. Consistency , 1984 .

[10]  S. Portnoy Asymptotic behavior of M-estimators of p regression parameters when p , 1985 .

[11]  Stephen Portnoy,et al.  Asymptotic Behavior of the Empiric Distribution of M-Estimated Residuals from a Regression Model with Many Parameters , 1986 .

[12]  R. R. Bahadur Some Limit Theorems in Statistics , 1987 .

[13]  S. Portnoy Asymptotic Behavior of Likelihood Methods for Exponential Families when the Number of Parameters Tends to Infinity , 1988 .

[14]  Bayes nonparametrics for biased sampling and density estimation. , 1992 .

[15]  Paul Marriott,et al.  Preferred Point Geometry and Statistical Manifolds , 1993 .

[16]  W. Wong,et al.  Probability inequalities for likelihood ratios and convergence rates of sieve MLEs , 1995 .

[17]  J. Ghosh,et al.  On convergence of posterior distributions , 1995 .

[18]  D. Freedman On the Bernstein-von Mises Theorem with Infinite Dimensional Parameters , 1999 .

[19]  J. Ghosh,et al.  POSTERIOR CONSISTENCY OF DIRICHLET MIXTURES IN DENSITY ESTIMATION , 1999 .

[20]  Subhashis Ghosal,et al.  Asymptotic normality of posterior distributions in high-dimensional linear models , 1999 .

[21]  Linda H. Zhao Bayesian aspects of some nonparametric problems , 2000 .

[22]  A. V. D. Vaart,et al.  Convergence rates of posterior distributions , 2000 .