Determination of the Axisymmetric Geometrically Nonlinear Thermoviscoelastoplastic State of Laminated Medium-Thickness Shells

A method is developed to determine the axisymmetric geometrically nonlinear thermoelastoviscoplastic stress–strain state of branched laminated medium-thickness shells of revolution. The method is based on the hypotheses of a rectilinear element for the whole set of layers. The shells are subject to loads that cause a meridional stress state and torsion. They can consist of isotropic layers, which deform beyond the elastic limit, and elastic orthotropic layers. The relations of thermoviscoplastic theory, which describe simple processes of loading, are employed as the equations of state for the isotropic layers. The solution of the problem is reduced to numerical integration of systems of differential equations. The geometrically nonlinear elastoplastic state of a two-layer corrugated shell of medium thickness is calculated as an example