Pricing Extendible Options Using the Fast Fourier Transform

This paper applies the fast Fourier transform (FFT) approach, within the Black-Scholes framework, to the valuation of options whose time to maturity can be extended to a future date (extendible options). We determine the valuation of the extendible options as sums of expectations of indicator functions, leading to a semianalytic expression for the value of the options over a range of strikes. Compared to Monte Carlo simulation, numerical examples demonstrate that the FFT is both computationally more efficient and higher in accuracy.

[1]  F. Longstaff Pricing Options with Extendible Maturities: Analysis and Applications , 1990 .

[2]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[3]  G. N. Mil’shtejn Approximate Integration of Stochastic Differential Equations , 1975 .

[4]  Eric Benhamou,et al.  Fast Fourier Transform for Discrete Asian Options , 2000 .

[5]  M. Dempster,et al.  Spread Option Valuation and the Fast Fourier Transform , 2002 .

[6]  S. N. Ibrahim,et al.  Power option pricing via Fast Fourier Transform , 2012, 2012 4th Computer Science and Electronic Engineering Conference (CEEC).

[7]  E. Eberlein,et al.  Analysis of Fourier Transform Valuation Formulas and Applications , 2008, 0809.3405.

[8]  General valuation principles for arbitrary payoffs and applications to power options under stochastic volatility , 2003 .

[9]  N. Constantinou,et al.  Pricing Power Options under the Heston Dynamics using the FFT , 2013 .

[10]  Chandrasekhar Reddy Gukhal,et al.  The compound option approach to American options on jump-diffusions , 2004 .

[11]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[12]  Wenli Zhu,et al.  Fast Fourier Transform Based Power Option Pricing with Stochastic Interest Rate, Volatility, and Jump Intensity , 2013, J. Appl. Math..

[13]  J. G. O'Hara,et al.  FFT based option pricing under a mean reverting process with stochastic volatility and jumps , 2011, J. Comput. Appl. Math..

[14]  Y. Peter Chung,et al.  Extendible options: The general case , 2011 .

[15]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[16]  P. Boyle Options: A Monte Carlo approach , 1977 .

[17]  Antônio Guimarães Dias,et al.  “ PETROLEUM CONCESSIONS WITH EXTENDIBLE OPTIONS USING MEAN REVERSION WITH JUMPS TO MODEL OIL PRICES ” Marco , 1999 .

[18]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[19]  Su-mei Zhang,et al.  A Fast Fourier Transform Technique for Pricing European Options with Stochastic Volatility and Jump Risk , 2012 .

[20]  Cornelis W. Oosterlee,et al.  A Fourier-Based Valuation Method for Bermudan and Barrier Options under Heston's Model , 2011, SIAM J. Financial Math..

[21]  U. Cherubini,et al.  Fourier Transform Methods in Finance , 2010 .