Chemically self-assembled nanoelectronic computing networks

Recent advances in chemical self-assembly will soon make it possible to synthesize extremely powerful computing machinery from metallic clusters and organic molecules. These self-organized networks can function as Boolean logic circuits, associative memory, image processors, and combinatorial optimizers. Computational or signal processing activity is elicited from simple charge interactions between clusters which are resistively/capacitively linked by conjugated molecular wires or ribbons. The resulting circuits are massively parallel, fault-tolerant, ultrafast, ultradense and dissipate very little power.

[1]  George M. Whitesides,et al.  Structure of monolayers formed by coadsorption of two n-alkanethiols of different chain lengths on gold and its relation to wetting , 1992 .

[2]  A Novel Quantum Cellular Automata Logic with Loop Structures , 1994 .

[3]  Ralph G. Nuzzo,et al.  ADSORPTION OF BIFUNCTIONAL ORGANIC DISULFIDES ON GOLD SURFACES , 1983 .

[4]  Vwani P. Roychowdhury,et al.  Nanoelectronic architecture for Boolean logic , 1997, Proc. IEEE.

[5]  Supriyo Bandyopadhyay,et al.  Nanofabrication of a quantum dot array: Atomic force microscopy of electropolished aluminum , 1996 .

[6]  T. Ohshima,et al.  Operation of bistable phase‐locked single‐electron tunneling logic elements , 1996 .

[7]  K. K. Likharev,et al.  Classical and quantum limitations on energy consumption in computation , 1982 .

[8]  Gerd Schön,et al.  Single-Electron Effects in Arrays of Normal Tunnel Junctions , 1989 .

[9]  David B. Janes,et al.  Electronic conduction through 2D arrays of nanometer diameter metal clusters , 1995 .

[10]  D. B. Janes,et al.  Stability of a low-temperature grown GaAs surface layer following air exposure using tunneling microscopy , 1996 .

[11]  Michael R. Melloch,et al.  Very low resistance nonalloyed ohmic contacts using low‐temperature molecular beam epitaxy of GaAs , 1995 .

[12]  S. Chou,et al.  Imprint Lithography with 25-Nanometer Resolution , 1996, Science.

[13]  Richard A. Kiehl,et al.  Bistable locking of single‐electron tunneling elements for digital circuitry , 1995 .

[14]  M. Ratner,et al.  Current‐voltage characteristics of molecular wires: Eigenvalue staircase, Coulomb blockade, and rectification , 1996 .

[15]  D. B. Janes,et al.  Inhibited oxidation in low‐temperature grown GaAs surface layers observed by photoelectron spectroscopy , 1996 .

[16]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[17]  Resve Saleh,et al.  Analysis and Design of Digital Integrated Circuits , 1983 .

[18]  P. Mohanty,et al.  Intrinsic Decoherence in Mesoscopic Systems , 1997, cond-mat/9710095.

[19]  W. Porod,et al.  Analysis of the device performance of quantum interference transistors utilizing ultrasmall semiconductorTstructures , 1990 .

[20]  Kris Kempa,et al.  Spontaneous polarization of electrons in quantum dashes , 1991 .

[21]  Zahid A. K. Durrani,et al.  Resistance bi‐stability in resonant tunneling diode pillar arrays , 1995 .

[22]  Gregory M. Ferrence,et al.  Self-assembled monolayers of dithiols, diisocyanides, and isocyanothiols on gold: ‘chemically sticky’ surfaces for covalent attachment of metal clusters and studies of interfacial electron transfer , 1996 .

[23]  John R. Tucker,et al.  Complementary digital logic based on the ``Coulomb blockade'' , 1992 .