Semiclassical asymptotics in magnetic Bloch bands

This paper gives a simple construction of wave packets localized near semiclassical trajectories for an electron subject to external electric and magnetic fields. We assume that the magnetic and electric potentials are slowly varying perturbations of the potential of a constant magnetic field and a periodic lattice potential, respectively.

[1]  R. Peierls,et al.  Zur Theorie des Diamagnetismus von Leitungselektronen , 1933 .

[2]  J. Sjöstrand,et al.  A mathematical approach to the effective Hamiltonian in perturbed periodic problems , 1991 .

[3]  B. Helffer,et al.  Analyse semi-classique pour l'équation de Harper (avec application à l'équation de Schrödinger avec champ magnétique) , 1988 .

[4]  R. Rammal,et al.  An algebraic semi-classical approach to Bloch electrons in a magnetic field , 1990 .

[5]  Barry Simon,et al.  Holonomy, the Quantum Adiabatic Theorem, and Berry's Phase , 1983 .

[6]  M. Kohmoto Berry's Phase of Bloch Electrons in Electromagnetic Fields , 1993 .

[7]  Chang,et al.  Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical dynamics in magnetic Bloch bands. , 1996, Physical review. B, Condensed matter.

[8]  James Ralston,et al.  Semi-classical asymptotics in solid state physics , 1988 .

[9]  J. Zak Dynamics of Electrons in Solids in External Fields , 1968 .

[10]  Joseph B. Keller,et al.  Asymptotic solution of eigenvalue problems , 1960 .

[11]  Chang,et al.  Berry phase, hyperorbits, and the Hofstadter spectrum. , 1995, Physical review letters.

[12]  James Ralston,et al.  On the construction of quasimodes associated with stable periodic orbits , 1979 .

[13]  Semi-classical constructions in solid state physics , 1991 .

[14]  Johannes J. Duistermaat,et al.  Oscillatory integrals, lagrange immersions and unfolding of singularities , 1974 .

[15]  V. Buslaev Semiclassical approximation for equations with periodic coefficients , 1987 .