Cationic Silicon Nanocrystals with Colloidal Stability, pH‐Independent Positive Surface Charge and Size Tunable Photoluminescence in the Near‐Infrared to Red Spectral Range

In this report, the synthesis of a novel class of cationic quaternary ammonium‐surface‐functionalized silicon nanocrystals (ncSi) using a novel and highly versatile terminal alkyl halide‐surface‐functionalized ncSi synthon is described. The distinctive features of these cationic ncSi include colloidal stability, pH‐independent positive surface charge, and size‐tunable photoluminescence (PL) in the biologically relevant near‐infrared‐to‐red spectral region. These cationic ncSi are characterized via a combination of high‐resolution scanning transmission electron microscopy with energy‐dispersive X‐ray analysis, Fourier transform infrared, X‐ray photoelectron, and photoluminescence spectroscopies, and zeta potential measurements.

[1]  P. Prasad,et al.  Quasi-reversible photoluminescence quenching of stable dispersions of silicon nanoparticles , 2005 .

[2]  Yi Yang,et al.  Assessing clinical prospects of silicon quantum dots: studies in mice and monkeys. , 2013, ACS nano.

[3]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[4]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[5]  Uli Lemmer,et al.  Colloidally stable silicon nanocrystals with near-infrared photoluminescence for biological fluorescence imaging. , 2011, Small.

[6]  Hong Ding,et al.  Biocompatible magnetofluorescent probes: luminescent silicon quantum dots coupled with superparamagnetic iron(III) oxide. , 2010, ACS nano.

[7]  Hong Ding,et al.  In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. , 2011, ACS nano.

[8]  Hassan S. Bazzi,et al.  Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots , 2005, Journal of Molecular Medicine.

[9]  G. Ozin,et al.  Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals. , 2012, Nano letters.

[10]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[11]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[12]  Ron C. Hardman A Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors , 2005, Environmental health perspectives.

[13]  R. Nitschke,et al.  Quantum dots versus organic dyes as fluorescent labels , 2008, Nature Methods.

[14]  R. Hamers,et al.  Interactions of alkylamines with the silicon (001) surface , 2002 .

[15]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[16]  P. Braun,et al.  Si–N linkage in ultrabright, ultrasmall Si nanoparticles , 2001 .

[17]  M. Dasog,et al.  Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. , 2014, ACS nano.

[18]  B. Hatton,et al.  Non-wettable, oxidation-stable, brightly luminescent, perfluorodecyl-capped silicon nanocrystal film. , 2014, Journal of the American Chemical Society.

[19]  D. M. Kroll,et al.  Ensemble brightening and enhanced quantum yield in size-purified silicon nanocrystals. , 2012, ACS nano.

[20]  R. F. Pinizzotto,et al.  A Comparison of Porous Silicon and Silicon Nanocrystallite Photoluminescence Quenching with Amines , 1996 .

[21]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[22]  P. Lai,et al.  Sized controlled synthesis, purification, and cell studies with silicon quantum dots. , 2011, Nanoscale.

[23]  A. Louie,et al.  An efficient microwave-assisted synthesis method for the production of water soluble amine-terminated Si nanoparticles , 2012, Nanotechnology.

[24]  G. Ozin,et al.  Size‐Selective Separation and Purification of “Water‐Soluble” Organically Capped Brightly Photoluminescent Silicon Nanocrystals , 2015 .

[25]  H. Datta,et al.  Alkyl-Capped Silicon Nanocrystals Lack Cytotoxicity and have Enhanced Intracellular Accumulation in Malignant Cells via Cholesterol-Dependent Endocytosis , 2008, Small.

[26]  M. Silly,et al.  Triethylamine on Si(001)-(2 × 1) at 300 K: Molecular Adsorption and Site Configurations Leading to Dissociation , 2012 .

[27]  M. Eden,et al.  Modeling the Precipitation of Polydisperse Nanoparticles Using a Total Interaction Energy Model , 2011 .

[28]  N. Shirahata,et al.  Colloidal silicon quantum dots: synthesis and luminescence tuning from the near-UV to the near-IR range , 2014, Science and technology of advanced materials.

[29]  Eli Ruckenstein,et al.  Water-Soluble Poly(acrylic acid) Grafted Luminescent Silicon Nanoparticles and Their Use as Fluorescent Biological Staining Labels , 2004 .

[30]  M. Olivo,et al.  Quantum dot capped magnetite nanorings as high performance nanoprobe for multiphoton fluorescence and magnetic resonance imaging. , 2010, Journal of the American Chemical Society.

[31]  J. Gilman,et al.  Nanotechnology , 2001 .

[32]  G. Ozin,et al.  Switching‐On Quantum Size Effects in Silicon Nanocrystals , 2015, Advanced materials.

[33]  Bartosz A. Grzybowski,et al.  Electrostatic Self-Assembly of Binary Nanoparticle Crystals with a Diamond-Like Lattice , 2006, Science.

[34]  R. Hamers,et al.  Silicon surfaces as electron acceptors: dative bonding of amines with Si(001) and Si(111) surfaces. , 2001, Journal of the American Chemical Society.

[35]  Ken-Tye Yong,et al.  Biocompatible luminescent silicon quantum dots for imaging of cancer cells. , 2008, ACS nano.

[36]  G. Ozin,et al.  Size-dependent chemical reactivity of silicon nanocrystals with water and oxygen , 2015 .

[37]  Hui Ma,et al.  A general route to efficient functionalization of silicon quantum dots for high-performance fluorescent probes. , 2012, Small.

[38]  Z. Popović,et al.  Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging , 2009 .

[39]  J. Veinot,et al.  Exploration of organic acid chain length on water-soluble silicon quantum dot surfaces. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[40]  M. Swihart,et al.  Nanotoxicity assessment of quantum dots: from cellular to primate studies. , 2013, Chemical Society reviews.

[41]  J. L. Hueso,et al.  Alkyl passivation and amphiphilic polymer coating of silicon nanocrystals for diagnostic imaging. , 2010, Small.

[42]  Akiyoshi Hoshino,et al.  Water-soluble photoluminescent silicon quantum dots. , 2005, Angewandte Chemie.

[43]  M. Dasog,et al.  Tuning silicon quantum dot luminescence via surface groups , 2014 .

[44]  Moungi G Bawendi,et al.  Compact biocompatible quantum dots functionalized for cellular imaging. , 2008, Journal of the American Chemical Society.