Structure, Dynamics, and Thermodynamics of Clusters: Tales from Topographic Potential Surfaces

Theoretical studies of atomic and molecular clusters often seek to explain structure, dynamics, and thermodynamics in terms of the underlying potential energy surface and the form of the interparticle interaction. One specific example from each of these categories is considered here; the overall approach can be summarized as global analysis of potential surfaces. Changes in the most favorable cluster morphology can be qualitatively understood as a function of the range of the interparticle forces. Thermodynamic properties can be calculated from a representative sample of local minima on the potential energy surface. However, prediction of dynamics requires not only knowledge of minima but also transition states and reaction pathways.

[1]  T. P. Martin,et al.  Observation of electronic shells and shells of atoms in large Na clusters , 1990 .

[2]  D. Wales Theoretical Study of Water Trimer , 1993 .

[3]  R. Whetten,et al.  Statistical thermodynamics of the cluster solid-liquid transition. , 1990, Physical review letters.

[4]  G. Scuseria Ab Initio Calculations of Fullerenes , 1996, Science.

[5]  D. Wales,et al.  From Topographies to Dynamics on Multidimensional Potential Energy Surfaces of Atomic Clusters , 1996, Science.

[6]  Jonathan P. K. Doye,et al.  Calculation of thermodynamic properties of small Lennard‐Jones clusters incorporating anharmonicity , 1995 .

[7]  G. Blake,et al.  Pseudorotation in the D2O trimer. , 1994, Chemical physics letters.

[8]  L. Wille,et al.  Computational complexity of the ground-state determination of atomic clusters , 1985 .

[9]  M. Hoare,et al.  Statistical mechanics and morphology of very small atomic clusters , 1976 .

[10]  H. C. Andersen,et al.  Molecular dynamics study of melting and freezing of small Lennard-Jones clusters , 1987 .

[11]  S. Weerasinghe,et al.  Absolute classical densities of states for very anharmonic systems and applications to the evaporation of rare gas clusters , 1993 .

[12]  B. Bagley A Dense Packing of Hard Spheres with Five-fold Symmetry , 1965, Nature.

[13]  M. Schütz,et al.  Two-dimensional model treatment of torsional motions in the water trimer , 1995 .

[14]  C. J. Tsai,et al.  Use of an eigenmode method to locate the stationary points on the potential energy surfaces of selected argon and water clusters , 1993 .

[15]  T. Bürgi,et al.  An ab initio derived torsional potential energy surface for (H2O)3. I. Analytical representation and stationary points , 1995 .

[16]  J. Doye,et al.  The Structure and Stability of Atomic Liquids: From Clusters to Bulk , 1996, Science.

[17]  C. Hall,et al.  Polymer-induced phase separations in nonaqueous colloidal suspensions , 1983 .

[18]  R. C. Cohen,et al.  Extending the collocation method to multidimensional molecular dynamics: direct determination of the intermolecular potential of argon-water from tunable far-infrared laser spectroscopy , 1990 .

[19]  H. Lüthi,et al.  An ab initio derived torsional potential energy surface for (H2O)3. II. Benchmark studies and interaction energies , 1995 .

[20]  Zimmermann,et al.  Clusters of fullerene molecules. , 1993, Physical review letters.

[21]  R. Stephen Berry,et al.  Statistical interpretation of topographies and dynamics of multidimensional potentials , 1995 .

[22]  T. P. Martin,et al.  Evidence for a size‐dependent melting of sodium clusters , 1994 .

[23]  L. Bartell Nucleation Rates in Freezing and Solid-State Transitions. Molecular Clusters as Model Systems , 1995 .

[24]  Eberhard R. Hilf,et al.  The structure of small clusters: Multiple normal-modes model , 1993 .

[25]  L. Girifalco Molecular properties of fullerene in the gas and solid phases , 1992 .

[26]  David J. Wales,et al.  Rearrangements of 55‐atom Lennard‐Jones and (C60)55 clusters , 1994 .

[27]  David J. Wales,et al.  Melting and freezing of small argon clusters , 1990 .

[28]  Geoffrey A. Blake,et al.  Molecular Interactions and Hydrogen Bond Tunneling Dynamics: Some New Perspectives , 1993, Science.

[29]  Jonathan P. K. Doye,et al.  Coexistence and phase separation in clusters: From the small to the not‐so‐small regime , 1995 .

[30]  J. Rzepiela,et al.  Far-IR Vibration-Rotation-Tunnelling Spectroscopy of the Water Trimer , 1994 .

[31]  R. Saykally,et al.  Measurement of the ν8 intermolecular vibration of (D2O)2 by tunable far infrared laser spectroscopy , 1992 .

[32]  Jonathan P. K. Doye,et al.  An order parameter approach to coexistence in atomic clusters , 1995 .

[33]  D. Lynden-Bell,et al.  On the negative specific heat paradox , 1977 .

[34]  T. L. Hill Adsorption on Proteins, the Grand Partition Function and First-Order Phase Changes, According to Approximate Statistical Mechanical Theories , 1953 .

[35]  L. Marks Surface structure and energetics of multiply twinned particles , 1984 .

[36]  R. Saykally,et al.  Water Clusters , 1996, Science.

[37]  Thomas A. Weber,et al.  Hidden structure in liquids , 1982 .

[38]  R. Saykally,et al.  Measurement of quantum tunneling between chiral isomers of the cyclic water trimer. , 1992, Science.

[39]  J. Doye,et al.  The effect of the range of the potential on the structures of clusters , 1995 .

[40]  D. Frenkel,et al.  Does C60 have a liquid phase? , 1993, Nature.

[41]  H. C. Longuet-Higgins The symmetry groups of non-rigid molecules , 1963 .

[42]  V. Hanuš,et al.  Cassiterite as a Carrier of Palaeomagnetism , 1965, Nature.

[43]  David J. Wales,et al.  Free energy barriers to melting in atomic clusters , 1994 .

[44]  Shozo Ino,et al.  Stability of Multiply Twinned Particles , 1969 .

[45]  J. Onuchic,et al.  Funnels, pathways, and the energy landscape of protein folding: A synthesis , 1994, Proteins.

[46]  H. Schaefer,et al.  Detailed study of the water trimer potential energy surface , 1995 .

[47]  A. Mackay A dense non-crystallographic packing of equal spheres , 1962 .

[48]  T. Bürgi,et al.  Three-dimensional model calculation of torsional levels of (H2O)3 and (D2O)3 , 1995 .

[49]  T. L. Hill On First‐Order Phase Transitions in Canonical and Grand Ensembles , 1955 .

[50]  Berry,et al.  Coexistence in finite systems. , 1994, Physical review letters.

[51]  J. Rzepiela,et al.  Dynamics of Structural Rearrangements in the Water Trimer , 1994 .

[52]  M. Schütz,et al.  Fluxionality and low‐lying transition structures of the water trimer , 1993 .

[53]  D. Wales,et al.  How the range of pair interactions governs features of multidimensional potentials , 1990 .

[54]  Poon,et al.  Phase behavior of a model colloid-polymer mixture. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[55]  F. B. Duijneveldt,et al.  AB INITIO POTENTIAL ENERGY SURFACE FOR THE LOW-FREQUENCY OUT-OF-PLANE BENDING MOTIONS OF THE WATER TRIMER , 1995 .

[56]  David J. Wales,et al.  Coexistence in small inert gas clusters , 1993 .

[57]  D. Frenkel,et al.  Colloids dispersed in polymer solutions. A computer simulation study , 1994 .

[58]  D. Clary,et al.  Calculations of the tunneling splittings in water dimer and trimer using diffusion Monte Carlo , 1995 .

[59]  J. Jortner,et al.  Energetic and thermodynamic size effects in molecular clusters , 1989 .

[60]  P. Morse Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels , 1929 .

[61]  Cheng,et al.  Prediction of the phase diagram of rigid C60 molecules. , 1993, Physical Review Letters.

[62]  Complete statistical thermodynamics of the cluster solid-liquid transition. , 1992, Physical review. A, Atomic, molecular, and optical physics.