Gabor Frames and Time-Frequency Analysis of Distributions*
暂无分享,去创建一个
[1] Dennis Gabor,et al. Theory of communication , 1946 .
[2] J. Neumann. Mathematical Foundations of Quantum Mechanics , 1955 .
[3] Y. Katznelson. An Introduction to Harmonic Analysis: Interpolation of Linear Operators , 1968 .
[4] P. Fillmore. Notes on operator theory , 1970 .
[5] J.B. Allen,et al. A unified approach to short-time Fourier analysis and synthesis , 1977, Proceedings of the IEEE.
[6] H. Feichtinger. On a new Segal algebra , 1981 .
[7] A. Janssen. Gabor representation of generalized functions , 1981 .
[8] R. Balian. Un principe d'incertitude fort en théorie du signal ou en mécanique quantique , 1981 .
[9] H. Triebel. Modulation Spaces on the Euclidean $n$-Space , 1983 .
[10] Christopher Heil,et al. Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..
[11] H. Feichtinger,et al. Banach spaces related to integrable group representations and their atomic decompositions, I , 1989 .
[12] H. Feichtinger. Atomic characterizations of modulation spaces through Gabor-type representations , 1989 .
[13] Ingrid Daubechies,et al. The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.
[14] H. Feichtinger. Generalized Amalgams, With Applications to Fourier Transform , 1990, Canadian Journal of Mathematics.
[15] B. Jawerth,et al. A discrete transform and decompositions of distribution spaces , 1990 .
[16] Jason Wexler,et al. Discrete Gabor expansions , 1990, Signal Process..
[17] I. Gohberg,et al. Classes of Linear Operators , 1990 .
[18] K. Gröchenig. Describing functions: Atomic decompositions versus frames , 1991 .
[19] D. Walnut. Continuity properties of the Gabor frame operator , 1992 .
[20] H. Feichtinger,et al. Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view , 1993 .
[21] D. Walnut,et al. Wilson Bases and Modulation Spaces , 1992 .
[22] Karlheinz Gröchenig,et al. Acceleration of the frame algorithm , 1993, IEEE Trans. Signal Process..
[23] D. Donoho. Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .
[24] D. Walnut. Lattice size estimates for Gabor decompositions , 1993 .
[25] A. Janssen. Duality and Biorthogonality for Weyl-Heisenberg Frames , 1994 .
[26] R. Tolimieri,et al. Poisson Summation, the Ambiguity Function, and the Theory of Weyl-Heisenberg Frames , 1994 .
[27] D. Walnut,et al. Differentiation and the Balian-Low Theorem , 1994 .
[28] I. Daubechies,et al. Gabor Time-Frequency Lattices and the Wexler-Raz Identity , 1994 .
[29] Augustus J. E. M. Janssen. On rationally oversampled Weyl-Heisenberg frames , 1995, Signal Process..
[30] O. Christensen,et al. Group theoretical approach to Gabor analysis , 1995 .