Measurement of the neutron flux at spallation sources using multi-foil activation

Abstract Activation analysis is used in this work to measure the flux of a fast neutron beamline at a spallation source over a wide energy spectrum, extending from thermal to hundreds of MeV. The experimental method is based on the irradiation of multiple elements and measurements of activation γ -lines using a High Purity Germanium detector. The method for data analysis is then described in detail, with particular attention to the evaluation of uncertainties. The reactions have been chosen so to cover the whole energy range, using mainly (n, γ ) for thermal and epithermal neutrons, and threshold reactions for the fast region. The variety of these reactions allowed for the unfolding of the neutron spectrum, using an algorithm based on a Bayesian statistical model, and limited correlations have been found between the energy groups.

[1]  Alan D. Martin,et al.  Review of Particle Physics , 2014 .

[2]  Giuseppe Gorini,et al.  A new dedicated neutron facility for accelerated SEE testing at the ISIS facility , 2009, 2009 IEEE International Reliability Physics Symposium.

[3]  Ezio Previtali,et al.  Bayesian statistics applied to neutron activation data for reactor flux spectrum analysis , 2014 .

[4]  Dorothea Wiarda,et al.  Low-fidelity Covariance Project , 2008 .

[5]  H.H.K. Tang,et al.  Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground , 2004, IEEE Transactions on Nuclear Science.

[6]  M. Tardocchi,et al.  Characterization of the γ background in epithermal neutron scattering measurements at pulsed neutron sources , 2006 .

[7]  Tae-Hoon Lee,et al.  A fission ionization detector for neutron flux measurements at a spallation source , 1993 .

[8]  B. Pritychenko,et al.  Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 Evaluated Data Libraries , 2012, 1208.2879.

[9]  Kenneth W. Herwig,et al.  The Spallation Neutron Source in Oak Ridge: A powerful tool for materials research , 2006 .

[10]  Shuryak,et al.  Screening of the topological charge in a correlated instanton vacuum. , 1995, Physical review. D, Particles and fields.

[11]  M. Nocente,et al.  A telescope proton recoil spectrometer for fast neutron beam-lines , 2015 .

[12]  V. Variale,et al.  Performance of the neutron time-of-flight facility n_TOF at CERN , 2013, The European Physical Journal A.

[13]  E. Blackmore Development of a Large Area Neutron Beam for System Testing at TRIUMF , 2009, 2009 IEEE Radiation Effects Data Workshop.

[14]  G. Claps,et al.  GEM-based detectors for thermal and fast neutrons , 2015 .

[15]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[16]  A. N. Smirnov,et al.  ANITA — a new neutron facility for accelerated SEE testing at the svedberg laboratory , 2009, 2009 IEEE International Reliability Physics Symposium.

[17]  A. Borio di Tigliole,et al.  TRIGA reactor absolute neutron flux measurement using activated isotopes , 2014 .

[18]  C. Wilson A guided tour of ISIS—the UK spallation neutron source , 1995 .

[19]  E. Blackmore,et al.  Intensity Upgrade to the TRIUMF 500 MeV Large-Area Neutron Beam , 2014, 2014 IEEE Radiation Effects Data Workshop (REDW).

[20]  G. Festa,et al.  Measurements of gamma-ray background spectra at spallation neutron source beamlines , 2014 .

[21]  C. D. Bowman,et al.  The Los Alamos National Laboratory Spallation Neutron Sources , 1990 .

[22]  A. Prokofiev,et al.  CUP–A New High-Flux Irradiation Position at the ANITA Neutron Facility at TSL , 2013, IEEE Transactions on Nuclear Science.

[23]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[24]  V. Weisskopf,et al.  Statistics and Nuclear Reactionsl , 1937 .

[25]  S. P. Platt,et al.  Fidelity of energy spectra at neutron facilities for single-event effects testing , 2010, 2010 IEEE International Reliability Physics Symposium.

[26]  Alessandro Paccagnella,et al.  Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source , 2008 .

[27]  M. Tardocchi,et al.  Time-stability of a Single-crystal Diamond Detector for fast neutron beam diagnostic under alpha and neutron irradiation , 2016 .

[28]  N. M. Larson,et al.  ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data , 2011 .

[29]  Arjan J. Koning,et al.  Modern Nuclear Data Evaluation with the TALYS Code System , 2012 .

[30]  P. Picozza,et al.  Characterization of the neutron field at the ISIS-VESUVIO facility by means of a bonner sphere spectrometer , 2009 .

[31]  G. J. Russell,et al.  Introduction to spallation physics and spallation-target design , 1995 .

[32]  E. Klinkby,et al.  The neutron moderators for the European Spallation Source , 2018 .

[33]  M. Tardocchi,et al.  Characterization of the high-energy neutron beam of the PRISMA beamline using a diamond detector , 2016 .

[34]  M. Nocente,et al.  Thin YAP:Ce and LaBr3:Ce scintillators as proton detectors of a thin-film proton recoil neutron spectrometer for fusion and spallation sources applications , 2014 .

[35]  M. C. Jiménez-Ramos,et al.  Charge collection uniformity and irradiation effects of synthetic diamond detectors studied with a proton micro-beam , 2017 .

[36]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[37]  M. Clemenza,et al.  Measurement and simulation of the neutron flux distribution in the TRIGA Mark II reactor core , 2015 .

[38]  W. Kockelmann,et al.  Characterization of γ-ray background at IMAT beamline of ISIS Spallation Neutron Source , 2017 .