Structure and Function of the Transcription Elongation Factor GreB Bound to Bacterial RNA Polymerase

Bacterial GreA and GreB promote transcription elongation by stimulating an endogenous, endonucleolytic transcript cleavage activity of the RNA polymerase. The structure of Escherichia coli core RNA polymerase bound to GreB was determined by cryo-electron microscopy and image processing of helical crystals to a nominal resolution of 15 A, allowing fitting of high-resolution RNA polymerase and GreB structures. In the resulting model, the GreB N-terminal coiled-coil domain extends 45 A through a channel directly to the RNA polymerase active site. The model leads to detailed insights into the mechanism of Gre factor activity that explains a wide range of experimental observations and points to a key role for conserved acidic residues at the tip of the Gre factor coiled coil in modifying the RNA polymerase active site to catalyze the cleavage reaction. Mutational studies confirm that these positions are critical for Gre factor function.

[1]  S. Darst,et al.  Crystal structure of the GreA transcript cleavage factor from Escherichia coli , 1995, Nature.

[2]  D. Bushnell,et al.  Structural Basis of Transcription Nucleotide Selection by Rotation in the RNA Polymerase II Active Center , 2004, Cell.

[3]  P. Ghanouni,et al.  The RNA polymerase II elongation complex. Factor-dependent transcription elongation involves nascent RNA cleavage. , 1992, The Journal of biological chemistry.

[4]  T. Richmond,et al.  Crystal structure of a yeast TFIIA/TBP/DNA complex , 1996, Nature.

[5]  S. Darst,et al.  Visualization of the binding site for the transcript cleavage factor GreB on Escherichia coli RNA polymerase. , 1998, Journal of molecular biology.

[6]  C. Chan,et al.  GreA-induced transcript cleavage in transcription complexes containing Escherichia coli RNA polymerase is controlled by multiple factors, including nascent transcript location and structure. , 1994, The Journal of biological chemistry.

[7]  C. Gross,et al.  The functional and regulatory roles of sigma factors in transcription. , 1998, Cold Spring Harbor symposia on quantitative biology.

[8]  E. Nudler,et al.  The RNA–DNA Hybrid Maintains the Register of Transcription by Preventing Backtracking of RNA Polymerase , 1997, Cell.

[9]  K. Murakami,et al.  Structural Basis of Transcription Initiation: RNA Polymerase Holoenzyme at 4 Å Resolution , 2002, Science.

[10]  S K Burley,et al.  Crystal structure of the C-terminal domain of the RAP74 subunit of human transcription factor IIF , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[11]  윤호주 전사인자(transcription factor)와 기관지천식 , 1999 .

[12]  J. Archambault,et al.  Genetic interaction between transcription elongation factor TFIIS and RNA polymerase II , 1992, Molecular and cellular biology.

[13]  R. Mercer Structure of the Na,K-ATPase. , 1993, International Review of Cytology.

[14]  S. Burley,et al.  Crystal structure of a TFIIB–TBP–TATA-element ternary complex , 1995, Nature.

[15]  Arkady Mustaev,et al.  Structural Mechanism for Rifampicin Inhibition of Bacterial RNA Polymerase , 2001, Cell.

[16]  M. Kashlev,et al.  RNA Polymerase Switches between Inactivated and Activated States By Translocating Back and Forth along the DNA and the RNA* , 1997, The Journal of Biological Chemistry.

[17]  T. Kubo,et al.  Structure-Function Relationship of Yeast S-II in Terms of Stimulation of RNA Polymerase II, Arrest Relief, and Suppression of 6-Azauracil Sensitivity (*) , 1995, The Journal of Biological Chemistry.

[18]  D. Luse,et al.  The RNA polymerase II ternary complex cleaves the nascent transcript in a 3'----5' direction in the presence of elongation factor SII. , 1992, Genes & development.

[19]  P. Cramer,et al.  Structural Basis of Transcription: An RNA Polymerase II Elongation Complex at 3.3 Å Resolution , 2001, Science.

[20]  A. Das,et al.  Intrinsic transcript cleavage activity of RNA polymerase. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[21]  M. Weiss,et al.  Structure of a new nucleic-acid-binding motif in eukaryotic transcriptional elongation factor TFIIS , 1993, Nature.

[22]  D. DeRosier,et al.  Averaging data derived from images of helical structures with different symmetries. , 1999, Journal of molecular biology.

[23]  P. Cramer,et al.  Structural Basis of Transcription: RNA Polymerase II at 2.8 Ångstrom Resolution , 2001, Science.

[24]  K. Severinov,et al.  Mapping of trypsin cleavage and antibody-binding sites and delineation of a dispensable domain in the beta subunit of Escherichia coli RNA polymerase. , 1991, The Journal of biological chemistry.

[25]  R. Young,et al.  RNA polymerase II. , 1991, Annual review of biochemistry.

[26]  S. Darst,et al.  Crystal Structure of a σ70 Subunit Fragment from E. coli RNA Polymerase , 1996, Cell.

[27]  P. Cramer,et al.  Architecture of the RNA Polymerase II-TFIIS Complex and Implications for mRNA Cleavage , 2003, Cell.

[28]  S. Darst,et al.  Mapping Interactions of Escherichia coli GreB with RNA Polymerase and Ternary Elongation Complexes* , 1999, The Journal of Biological Chemistry.

[29]  J. Roberts,et al.  Function of transcription cleavage factors GreA and GreB at a regulatory pause site. , 2000, Molecular cell.

[30]  Patrick Cramer,et al.  Multisubunit RNA polymerases. , 2002, Current opinion in structural biology.

[31]  K. Severinov,et al.  Crystal Structure of Thermus aquaticus Core RNA Polymerase at 3.3 Å Resolution , 1999, Cell.

[32]  M. Chamberlin,et al.  Escherichia coli transcript cleavage factors GreA and GreB stimulate promoter escape and gene expression in vivo and in vitro. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[33]  S. Darst,et al.  Structure of the Bacterial RNA Polymerase Promoter Specificity σ Subunit , 2002 .

[34]  V. Armstrong,et al.  Mechanistic studies on deoxyribonucleic acid dependent ribonucleic acid polymerase from Escherichia coli using phosphorothioate analogues. 1. Initiation and pyrophosphate exchange reactions. , 1979, Biochemistry.

[35]  S. Orlicky,et al.  Transcription Elongation through DNA Arrest Sites , 1997, The Journal of Biological Chemistry.

[36]  S. Borukhov,et al.  Mapping of a contact for the RNA 3' terminus in the largest subunit of RNA polymerase. , 1991, The Journal of biological chemistry.

[37]  Willy Wriggers,et al.  Conformational flexibility of bacterial RNA polymerase , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[38]  A. Sali,et al.  Domain Organization of Escherichia coli Transcript Cleavage Factors GreA and GreB* , 1997, The Journal of Biological Chemistry.

[39]  K. Severinov,et al.  A non-essential domain of Escherichia coli RNA polymerase required for the action of the termination factor Alc. , 1994, The Journal of biological chemistry.

[40]  Asis Das,et al.  GreA and GreB proteins revive backtracked RNA polymerase in vivo by promoting transcript trimming , 2000, The EMBO journal.

[41]  P. V. von Hippel,et al.  Multiple RNA polymerase conformations and GreA: control of the fidelity of transcription. , 1993, Science.

[42]  M. Chamberlin,et al.  Transcription elongation factor SII (TFIIS) enables RNA polymerase II to elongate through a block to transcription in a human gene in vitro. , 1989, The Journal of biological chemistry.

[43]  W. Mangel,et al.  RNA polymerase , 2020, Nature.

[44]  D. Reines Elongation factor-dependent transcript shortening by template-engaged RNA polymerase II. , 1992, The Journal of biological chemistry.

[45]  A. Ueno,et al.  Stimulation of transcript elongation requires both the zinc finger and RNA polymerase II binding domains of human TFIIS. , 1991, Biochemistry.

[46]  R. Ebright RNA polymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. , 2000, Journal of molecular biology.

[47]  A. Sluder,et al.  Properties of a Drosophila RNA polymerase II elongation factor. , 1989, The Journal of biological chemistry.

[48]  C. Kane,et al.  Alanine-scanning mutagenesis of human transcript elongation factor TFIIS. , 1995, Biochemistry.

[49]  C. Arrowsmith,et al.  Yeast Transcript Elongation Factor (TFIIS), Structure and Function , 1998, The Journal of Biological Chemistry.

[50]  M. Kashlev,et al.  Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3' end of the RNA intact and extruded. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[51]  C. Arrowsmith,et al.  Elongation factor TFIIS contains three structural domains: solution structure of domain II. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[52]  S. Borukhov,et al.  GreA protein: a transcription elongation factor from Escherichia coli. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[53]  V. Markovtsov,et al.  Swing-gate model of nucleotide entry into the RNA polymerase active center. , 2002, Molecular cell.

[54]  S. Borukhov,et al.  Distinct functions of N and C-terminal domains of GreA, an Escherichia coli transcript cleavage factor. , 1998, Journal of molecular biology.

[55]  Grant J. Jensen,et al.  Yeast RNA Polymerase II at 5 Å Resolution , 1999, Cell.

[56]  Arkady Mustaev,et al.  Unified two‐metal mechanism of RNA synthesis and degradation by RNA polymerase , 2003, The EMBO journal.

[57]  S. Darst,et al.  The Functional Role of Basic Patch, a Structural Element ofEscherichia coli Transcript Cleavage Factors GreA and GreB* , 2000, The Journal of Biological Chemistry.

[58]  D. Erie,et al.  Transcript Cleavage by Thermus thermophilus RNA Polymerase , 2002, The Journal of Biological Chemistry.

[59]  J. Archambault,et al.  In vitro characterization of mutant yeast RNA polymerase II with reduced binding for elongation factor TFIIS. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[60]  R. Kornberg,et al.  Eukaryotic transcriptional control. , 1999, Trends in cell biology.

[61]  S. Borukhov,et al.  Purification and assay of Escherichia coli transcript cleavage factors GreA and GreB. , 1996, Methods in enzymology.

[62]  R. Ebright,et al.  Bacterial RNA polymerase subunit omega and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[63]  D. Stokes,et al.  Structure of Na+,K+-ATPase at 11-A resolution: comparison with Ca2+-ATPase in E1 and E2 states. , 2001, Biophysical journal.

[64]  M. Chamberlin,et al.  Spontaneous cleavage of RNA in ternary complexes of Escherichia coli RNA polymerase and its significance for the mechanism of transcription. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[65]  S. Darst,et al.  Three-dimensional structure of E. coil core RNA polymerase: Promoter binding and elongation conformations of the enzyme , 1995, Cell.

[66]  S. Borukhov,et al.  Transcript cleavage factors from E. coli , 1993, Cell.

[67]  W. Wooster,et al.  Crystal structure of , 2005 .

[68]  K. Severinov,et al.  Direct localization of a beta-subunit domain on the three-dimensional structure of Escherichia coli RNA polymerase. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[69]  S. Darst,et al.  Structure of the Escherichia coli RNA Polymerase α Subunit Amino-Terminal Domain , 1998 .

[70]  S. Darst,et al.  A Structural Model of Transcription Elongation , 2000 .

[71]  M. Chamberlin,et al.  Basic mechanisms of transcript elongation and its regulation. , 1997, Annual review of biochemistry.

[72]  C. Arrowsmith,et al.  Yeast Transcript Elongation Factor (TFIIS), Structure and Function , 1998, The Journal of Biological Chemistry.

[73]  R. Ebright,et al.  Transcription activation by catabolite activator protein (CAP). , 1999, Journal of molecular biology.

[74]  W Wriggers,et al.  Modeling tricks and fitting techniques for multiresolution structures. , 2001, Structure.

[75]  V. Markovtsov,et al.  Modular organization of the catalytic center of RNA polymerase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[76]  D. K. Hawley,et al.  Identification of a 3'-->5' exonuclease activity associated with human RNA polymerase II. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[77]  K. Agarwal,et al.  The transcription factor TFIIS zinc ribbon dipeptide Asp-Glu is critical for stimulation of elongation and RNA cleavage by RNA polymerase II. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[78]  S. Yokoyama,et al.  Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution , 2002, Nature.

[79]  M. Rudd,et al.  The active site of RNA polymerase II participates in transcript cleavage within arrested ternary complexes. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[80]  E. Geiduschek,et al.  Crystal structure of a transcription factor IIIB core interface ternary complex , 2003, Nature.

[81]  C. Kane,et al.  Promoting elongation with transcript cleavage stimulatory factors. , 2002, Biochimica et biophysica acta.

[82]  S. Darst,et al.  Bacterial RNA polymerase. , 2001, Current opinion in structural biology.

[83]  V. Markovtsov,et al.  Protein-RNA interactions in the active center of transcription elongation complex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[84]  D. K. Hawley,et al.  Promoter Proximal Sequences Modulate RNA Polymerase II Elongation by a Novel Mechanism , 1996, Cell.

[85]  A. Hoffmann,et al.  Crystal structure of TFIID TATA-box binding protein , 1992, Nature.