Large Cells in Poisson–Delaunay Tessellations
暂无分享,去创建一个
[1] A. Goldman. Sur une conjecture de D.G. Kendall concernant la cellule de Crofton du plan et sur sa contrepartie brownienne , 1998 .
[2] K. Ball. CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .
[3] R. E. Miles. A heuristic proof of a long-standing conjecture of D. G. Kendall concerning the shapes of certain large random polygons , 1995, Advances in Applied Probability.
[4] K. Leichtweiss,et al. Über die affine Exzentrizität konvexer Körper , 1959 .
[5] Igor N. Kovalenko,et al. Proof of David Kendall’s conjecture concerning the shape of large random polygons , 1997 .
[6] Igor N. Kovalenko,et al. A simplified proof of a conjecture of D. G. Kendall concerning shapes of random polygons , 1999 .
[7] I. Bárány. LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .
[8] Daniel Hug,et al. The limit shape of the zero cell in a stationary Poisson hyperplane tessellation , 2004 .
[9] Jiri Matousek,et al. Lectures on discrete geometry , 2002, Graduate texts in mathematics.
[10] D. Stoyan,et al. Stochastic Geometry and Its Applications , 1989 .
[11] D. Stoyan,et al. Stochastic Geometry and Its Applications , 1989 .
[12] J. Møller. Random tessellations in ℝ d , 1989, Advances in Applied Probability.