Resonant plasmonic terahertz detection in vertical graphene-base hot-electron transistors

We analyze dynamic properties of vertical graphene-base hot-electron transistors (GB-HETs) and consider their operation as detectors of terahertz (THz) radiation using the developed device model. The GB-HET model accounts for the tunneling electron injection from the emitter, electron propagation across the barrier layers with the partial capture into the GB, and the self-consistent oscillations of the electric potential and the hole density in the GB (plasma oscillations), as well as the quantum capacitance and the electron transit-time effects. Using the proposed device model, we calculate the responsivity of GB-HETs operating as THz detectors as a function of the signal frequency, applied bias voltages, and the structural parameters. The inclusion of the plasmonic effect leads to the possibility of the GB-HET operation at the frequencies significantly exceeding those limited by the characteristic RC-time. It is found that the responsivity of GB-HETs with a sufficiently perfect GB exhibits sharp resonant maxima in the THz range of frequencies associated with the excitation of plasma oscillations. The positions of these maxima are controlled by the applied bias voltages. The GB-HETs can compete with and even surpass other plasmonic THz detectors.

[1]  Maik Moeller,et al.  Introduction to Electrodynamics , 2017 .

[2]  M. Shur,et al.  InP Double Heterojunction Bipolar Transistor for broadband terahertz detection and imaging systems , 2015 .

[3]  M. Shur,et al.  Vertical electron transport in van der Waals heterostructures with graphene layers , 2015 .

[4]  A. Mirlin,et al.  Hydrodynamics in graphene: Linear-response transport , 2014, 1411.0819.

[5]  Tetsuya Suemitsu,et al.  Current-driven detection of terahertz radiation using a dual-grating-gate plasmonic detector , 2014 .

[6]  A. Satou,et al.  Ultrahigh sensitive sub-terahertz detection by InP-based asymmetric dual-grating-gate high-electron-mobility transistors and their broadband characteristics , 2014 .

[7]  Kang L. Wang,et al.  Vertical graphene-base hot-electron transistor. , 2013, Nano letters.

[8]  M. Shur,et al.  Dynamic effects in double graphene-layer structures with inter-layer resonant-tunnelling negative conductivity , 2013, 1305.3966.

[9]  K. Novoselov,et al.  Resonant tunnelling and negative differential conductance in graphene transistors , 2013, Nature Communications.

[10]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[11]  M. Ostling,et al.  A graphene-based hot electron transistor. , 2012, Nano letters.

[12]  B. Kong,et al.  Two dimensional crystal tunneling devices for THz operation , 2012, 1211.1593.

[13]  Michael S. Shur,et al.  Double graphene-layer plasma resonances terahertz detector , 2012 .

[14]  A. Ferrari,et al.  Graphene field-effect transistors as room-temperature terahertz detectors. , 2012, Nature materials.

[15]  Xiang Zhang,et al.  Double-layer graphene optical modulator. , 2012, Nano letters.

[16]  T. Otsuji,et al.  Hydrodynamic model for electron-hole plasma in graphene , 2012, 1201.0592.

[17]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[18]  J. Scheytt,et al.  Vertical Graphene Base Transistor , 2011, IEEE Electron Device Letters.

[19]  Ulrich Ellwanger,et al.  The Theory of Fields , 2012 .

[20]  Federico Capasso,et al.  Effect of radiation damping on the spectral response of plasmonic components. , 2011, Optics express.

[21]  S Succi,et al.  Preturbulent regimes in graphene flow. , 2011, Physical review letters.

[22]  Markus Müller,et al.  Graphene: a nearly perfect fluid. , 2009, Physical review letters.

[23]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[24]  L. Falkovsky,et al.  Optical properties of graphene , 2008, 0806.3663.

[25]  Safumi Suzuki,et al.  Resonant Tunneling Diodes for Sub-Terahertz and Terahertz Oscillators , 2008 .

[26]  D. Jena,et al.  Carrier statistics and quantum capacitance of graphene sheets and ribbons , 2007, 0707.2242.

[27]  V. Ryzhii,et al.  Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures , 2007 .

[28]  A. Shchepetov,et al.  Tunable plasma wave resonant detection of optical beating in high electron mobility transistor , 2006, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[29]  J. Cserti Minimal longitudinal dc conductivity of perfect bilayer graphene , 2006, cond-mat/0608219.

[30]  A. Shchepetov,et al.  Resonant and voltage-tunable terahertz detection in InGaAs /InP nanometer transistors , 2006 .

[31]  L. Falkovsky,et al.  Space-time dispersion of graphene conductivity , 2006, cond-mat/0606800.

[32]  Michael S. Shur,et al.  Plasma oscillations in high-electron-mobility transistors with recessed gate , 2006 .

[33]  V. Gusynin,et al.  Transport of Dirac quasiparticles in graphene: Hall and optical conductivities , 2005, cond-mat/0512157.

[34]  Michael S. Shur,et al.  Room-temperature plasma waves resonant detection of sub-terahertz radiation by nanometer field-effect transistor , 2005 .

[35]  L. Varani,et al.  Voltage tuneable terahertz emission from a ballistic nanometer InGaAs∕InAlAs transistor , 2005 .

[36]  Mitsuhiro Hanabe,et al.  Terahertz plasma wave resonance of two-dimensional electrons in InGaP/InGaAs/GaAs high-electron-mobility transistors , 2004 .

[37]  John L. Reno,et al.  Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors , 2002 .

[38]  Michael S. Shur,et al.  Resonant detection of subterahertz radiation by plasma waves in a submicron field-effect transistor , 2002 .

[39]  AlGaN–GaN–AlInGaN induced base transistor , 2000 .

[40]  V. Ryzhii Resonant Detection and Mixing of Terahertz Radiation by Induced Base Hot Electron Transistors , 1998 .

[41]  Voltage tunable plasma resonances in induced-base hot-electron transistors , 1997 .

[42]  Michael S. Shur,et al.  Plasma wave electronics: novel terahertz devices using two dimensional electron fluid , 1996 .

[43]  S. Luryi Quantum capacitance devices , 1988 .

[44]  M. Shur,et al.  Double base hot electron transistor , 1988 .

[45]  M. Nathan,et al.  Tunnelling hot electron transfer amplifiers (THETA): Ballistic GaAs devices with current gain , 1986 .

[46]  S. Luryi An induced base hot-electron transistor , 1985, IEEE Electron Device Letters.

[47]  J. Shannon Hot-electron camel transistor , 1979 .