A new doubly discrete analogue of smoke ring flow and the real time simulation of fluid flow

Modelling incompressible ideal fluids as a finite collection of vortex filaments is important in physics (super-fluidity, models for the onset of turbulence) as well as for numerical algorithms used in computer graphics for the real time simulation of smoke. Here we introduce a time-discrete evolution equation for arbitrary closed polygons in 3-space that is a discretization of the localized induction approximation of filament motion. This discretization shares with its continuum limit the property that it is a completely integrable system. We apply this polygon evolution to a significant improvement of the numerical algorithms used in computer graphics.

[1]  Luigi Sante Da Rios Sul moto d’un liquido indefinito con un filetto vorticoso di forma qualunque , 1906 .

[2]  J. Marsden,et al.  Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .

[3]  H. Hasimoto,et al.  A soliton on a vortex filament , 1972, Journal of Fluid Mechanics.

[4]  D. Levi,et al.  Bäcklund transformations and nonlinear differential difference equations. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Decio Levi,et al.  Nonlinear differential difference equations as Backlund transformations , 1981 .

[6]  G. R. W. Quispel,et al.  Direct linearization of nonlinear difference-difference equations , 1983 .

[7]  P. Gragert,et al.  Exact solution to localized-induction-approximation equation modeling smoke ring motion. , 1986, Physical review letters.

[8]  Alexandre J. Chorin,et al.  Hairpin Removal in Vortex Interactions II , 1990 .

[9]  The Hasimoto transformation and integrable flows on curves , 1990 .

[10]  Renzo L. Ricca,et al.  Rediscovery of Da Rios equations , 1991, Nature.

[11]  Alexandre J. Chorin Regular ArticleHairpin Removal in Vortex Interactions II , 1993 .

[12]  Levine,et al.  Vortex reconnection in superfluid helium. , 1993, Physical review letters.

[13]  P. Santini,et al.  Integrable dynamics of a discrete curve and the Ablowitz–Ladik hierarchy , 1994, solv-int/9407005.

[14]  Alexandre J. Chorin,et al.  Vorticity and turbulence , 1994 .

[15]  V. Arnold,et al.  Topological methods in hydrodynamics , 1998 .

[16]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[17]  Tim Hoffmann,et al.  Discrete Curves and Surfaces , 2000 .

[18]  A. Bobenko,et al.  Integrable Noncommutative Equations on Quad-graphs. The Consistency Approach , 2002 .

[19]  Philippe Chatelain,et al.  Reconnection of colliding vortex rings. , 2003, Physical review letters.

[20]  Alexander I. Bobenko,et al.  Communications in Mathematical Physics Classification of Integrable Equations on Quad-Graphs. The Consistency Approach , 2003 .

[21]  Computational model of vortex reconnection , 2003 .

[22]  Fabrice Neyret,et al.  Simulation of smoke based on vortex filament primitives , 2005, SCA '05.

[23]  Annalisa Calini,et al.  Finite-Gap Solutions of the Vortex Filament Equation: Genus One Solutions and Symmetric Solutions , 2005, J. Nonlinear Sci..

[24]  Derek Nowrouzezahrai,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2006) a Controllable, Fast and Stable Basis for Vortex Based Smoke Simulation , 2022 .

[26]  Tim Hoffmann Discrete Hashimoto Surfaces and a Doubly Discrete Smoke-Ring Flow , 2008 .

[27]  G. Pedrizzetti,et al.  Vortex Dynamics , 2011 .