Parametric Models to Characterize the Phenology of the Lowveld Savanna at Skukuza, South Africa

[1]  F. Veroustraete,et al.  Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China , 2006 .

[2]  K. Hocke,et al.  Gap filling and noise reduction of unevenly sampled data by means of the Lomb-Scargle periodogram , 2008 .

[3]  Jonas Ardö,et al.  The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data , 2020, Scientific Data.

[4]  S. Phinn,et al.  Analysis of multi-date MISR measurements for forest and woodland communities, Queensland, Australia , 2007 .

[5]  Nadine Gobron,et al.  Uniqueness of multiangular measurements. I. An indicator of subpixel surface heterogeneity from MISR , 2002, IEEE Trans. Geosci. Remote. Sens..

[6]  Nadine Gobron,et al.  Can We Use the QA4ECV Black-sky Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) using AVHRR Surface Reflectance to Assess Terrestrial Global Change? , 2019, Remote. Sens..

[7]  P. Atkinson,et al.  Photoperiod controls vegetation phenology across Africa , 2019, Communications Biology.

[8]  Michel M. Verstraete,et al.  Replacing missing values in the standard Multi-angle Imaging SpectroRadiometer (MISR) radiometric camera-by-camera cloud mask (RCCM) data product , 2020 .

[9]  Ramakrishna R. Nemani,et al.  A generalized, bioclimatic index to predict foliar phenology in response to climate , 2004 .

[10]  Frédéric Baret,et al.  A multisensor fusion approach to improve LAI time series , 2011 .

[11]  D. Baldocchi ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems , 2008 .

[12]  J. Katzfey,et al.  Projections of rapidly rising surface temperatures over Africa under low mitigation , 2015 .

[13]  Aditya Singh,et al.  Use of MODIS NDVI to evaluate changing latitudinal gradients of rangeland phenology in Sudano-Sahelian West Africa , 2011 .

[14]  A. Strahler,et al.  Monitoring vegetation phenology using MODIS , 2003 .

[15]  Xiangming Xiao,et al.  Land Surface Phenology , 2009 .

[16]  Tenaw Geremew Workie,et al.  Climate change and its effects on vegetation phenology across ecoregions of Ethiopia , 2018 .

[17]  Per Jönsson,et al.  TIMESAT - a program for analyzing time-series of satellite sensor data , 2004, Comput. Geosci..

[18]  Michel M. Verstraete,et al.  Potential and limitations of information extraction on the terrestrial biosphere from satellite remote sensing , 1996 .

[19]  Yueming Hu,et al.  Construction of smooth daily remote sensing time series data: a higher spatiotemporal resolution perspective , 2017, Open Geospatial Data, Software and Standards.

[20]  M. Verstraete,et al.  A phenology-based method to derive biomass production anomalies for food security monitoring in the Horn of Africa , 2014 .

[21]  Niall P. Hanan,et al.  Response of carbon fluxes to water relations in a savanna ecosystem in South Africa , 2008 .

[22]  The African contribution to the global climate-carbon cycle feedback of the 21st century , 2008 .

[23]  Nadine Gobron,et al.  Estimation of FAPAR over Croplands Using MISR Data and the Earth Observation Land Data Assimilation System (EO-LDAS) , 2017, Remote. Sens..

[24]  Niall P. Hanan,et al.  Woody cover in African savannas: the role of resources, fire and herbivory , 2008 .

[25]  Jin Chen,et al.  A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter , 2004 .

[26]  G. Balsamo,et al.  Multi-scale enhancement of climate prediction over land by increasing the model sensitivity to vegetation variability in EC-Earth , 2016, Climate Dynamics.

[27]  Michel M. Verstraete,et al.  Differing Responses to Rainfall Suggest More Than One Functional Type of Grassland in South Africa , 2018, Remote. Sens..

[28]  Kenneth Grogan,et al.  A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring , 2016, Remote. Sens..

[29]  Bernard Pinty,et al.  Generating 275-m Resolution Land Surface Products From the Multi-Angle Imaging SpectroRadiometer Data , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[30]  B. Erasmus,et al.  Land-cover change in the Kruger to Canyons Biosphere Reserve (1993-2006): a first step towards creating a conservation plan for the subregion. , 2010 .

[31]  N. Pettorelli,et al.  Combining optical and radar satellite image time series to map natural vegetation: savannas as an example , 2020, Remote Sensing in Ecology and Conservation.

[32]  N. Coops,et al.  Intercomparison of fraction of absorbed photosynthetically active radiation products derived from satellite data over Europe , 2014 .

[33]  M. Cho,et al.  Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment , 2012 .

[34]  Stephen Sitch,et al.  FLUXNET and modelling the global carbon cycle , 2007 .

[35]  Kelly K. Caylor,et al.  The Southern African Regional Science Initiative (SAFARI 2000) : wet season campaigns , 2002 .

[36]  Gregory P. Asner,et al.  Human-modified landscapes: patterns of fine-scale woody vegetation structure in communal savannah rangelands , 2011, Environmental Conservation.

[37]  Bernard Pinty,et al.  Consolidating the Two-Stream Inversion Package (JRC-TIP) to Retrieve Land Surface Parameters From Albedo Products , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[38]  F. Baret,et al.  A comparison of methods for smoothing and gap filling time series of remote sensing observations - application to MODIS LAI products , 2012 .

[39]  I. Jonckheere,et al.  Monitoring herbaceous fuel moisture content with SPOT VEGETATION time-series for fire risk prediction in savanna ecosystems , 2007 .

[40]  Michel M. Verstraete,et al.  Foreword to special section on MISR , 2002, IEEE Trans. Geosci. Remote. Sens..

[41]  Barry Haack,et al.  Radar and Optical Data Integration for Land-Use/Land-Cover Mapping , 2000 .

[42]  W. Landman,et al.  Seasonal prediction and regional climate projections for southern Africa , 2018 .

[43]  C. Williams,et al.  Drivers of inter-annual variability in Net Ecosystem Exchange in a semi-arid savanna ecosystem, South Africa , 2008 .

[44]  S. Higgins,et al.  Three decades of multi-dimensional change in global leaf phenology , 2015 .

[45]  W. Swinbank,et al.  THE MEASUREMENT OF VERTICAL TRANSFER OF HEAT AND WATER VAPOR BY EDDIES IN THE LOWER ATMOSPHERE , 1951 .

[46]  B. Reyers,et al.  The Race for Space: Tracking Land-Cover Transformation in a Socio-ecological Landscape, South Africa , 2013, Environmental Management.

[47]  M. Gilabert,et al.  Vegetation dynamics from NDVI time series analysis using the wavelet transform , 2009 .

[48]  Moses Azong Cho,et al.  Response of Land Surface Phenology to Variation in Tree Cover during Green-Up and Senescence Periods in the Semi-Arid Savanna of Southern Africa , 2017, Remote. Sens..

[49]  P. Eilers A perfect smoother. , 2003, Analytical chemistry.

[50]  W. Verhoef,et al.  Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa , 2017 .

[51]  Michel M. Verstraete,et al.  Improving the usability of the Multi-angle Imaging SpectroRadiometer (MISR) L1B2 Georectified Radiance Product (2000–present) in land surface applications , 2020, Earth System Science Data.

[52]  Robert J. Scholes,et al.  Southern Africa's ecosystem in a test-tube: A perspective on the Southern African Regional Science Initiative (SAFARI 2000) , 2002 .

[53]  D. Baldocchi,et al.  A New Data Set to Keep a Sharper Eye on Land-Air Exchanges , 2017 .

[54]  Frédéric Baret,et al.  Vegetation baseline phenology from kilometric global LAI satellite products , 2016 .

[55]  Serge Rambal,et al.  Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements , 2013 .

[56]  P. Jönsson,et al.  TIMESAT: A Software Package for Time-Series Processing and Assessment of Vegetation Dynamics , 2015 .

[57]  P. Beck,et al.  Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI , 2006 .

[58]  John F. Mustard,et al.  A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data , 2007 .

[59]  Nadine Gobron,et al.  Joint retrieval of vegetation structure and photosynthetic activity from MISR , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[60]  Andrew E. Suyker,et al.  A Two-Step Filtering approach for detecting maize and soybean phenology with time-series MODIS data , 2010 .

[61]  J. Muller,et al.  New directions in earth observing: Scientific applications of multiangle remote sensing , 1999 .

[62]  Peter M. Atkinson,et al.  A systematic review of vegetation phenology in Africa , 2016, Ecol. Informatics.

[63]  Per Jönsson,et al.  Seasonality extraction by function fitting to time-series of satellite sensor data , 2002, IEEE Trans. Geosci. Remote. Sens..

[64]  N. Gobron,et al.  Consistent retrieval of land surface radiation products from EO, including traceable uncertainty estimates , 2017 .

[65]  Zhe Gong,et al.  MODIS normalized difference vegetation index (NDVI) and vegetation phenology dynamics in the Inner Mongolia grassland , 2015 .

[66]  D. Diner,et al.  MISR: A multiangle imaging spectroradiometer for geophysical and climatological research from Eos , 1989 .

[67]  M. Cho,et al.  Remote sensing of species diversity using Landsat 8 spectral variables , 2017 .

[68]  F. Gerard,et al.  Leaf phenology amplitude derived from MODIS NDVI and EVI: Maps of leaf phenology synchrony for Meso‐ and South America , 2020, Geoscience Data Journal.

[69]  Mark A. Friedl,et al.  Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurements , 2006 .

[70]  Herman H. Shugart,et al.  The SAFARI 2000 – Kalahari Transect Wet Season Campaign of year 2000 , 2004 .

[71]  Wayne Twine,et al.  Consumption and direct-use values of savanna bio-resources used by rural households in Mametja, a semi-arid area of Limpopo province, South Africa. , 2003 .

[72]  Bernard Pinty,et al.  Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview , 1998, IEEE Trans. Geosci. Remote. Sens..

[74]  P. Jones,et al.  Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010: LAND-SURFACE TEMPERATURE VARIATIONS , 2012 .

[75]  R. Giering,et al.  Application to MISR land products of an RPV model inversion package using adjoint and Hessian codes , 2007 .

[76]  Keith R. McCloy,et al.  Development and Evaluation of Phenological Change Indices Derived from Time Series of Image Data , 2010, Remote. Sens..

[77]  Bernard Pinty,et al.  Evaluation of the JRC-TIP 0.01° products over a mid-latitude deciduous forest site , 2011 .

[78]  R. Scholes,et al.  The environment and vegetation of the flux measurement site near Skukuza, Kruger National Park , 2001 .

[79]  Michel M. Verstraete,et al.  Handling outliers in model inversion studies: a remote sensing case study using MISR-HR data in South Africa , 2018 .

[80]  H. Rahman,et al.  Coupled surface-atmosphere reflectance (CSAR) model: 2. Semiempirical surface model usable with NOAA advanced very high resolution radiometer data , 1993 .

[81]  P. Ciais,et al.  Leaf onset in the northern hemisphere triggered by daytime temperature , 2015, Nature Communications.

[82]  O. Sonnentag,et al.  Climate change, phenology, and phenological control of vegetation feedbacks to the climate system , 2013 .

[83]  Robert E. Wolfe,et al.  An Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics From MODIS Data , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[84]  Russell Main,et al.  Impact of communal land use and conservation on woody vegetation structure in the Lowveld savannas of South Africa , 2011 .

[85]  D. Baldocchi Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future , 2003 .

[86]  J. Muller,et al.  The value of multiangle measurements for retrieving structurally and radiatively consistent properties of clouds, aerosols, and surfaces , 2005 .

[87]  Josef Kellndorfer,et al.  Statistical fusion of lidar, InSAR, and optical remote sensing data for forest stand height characterization: A regional‐scale method based on LVIS, SRTM, Landsat ETM+, and ancillary data sets , 2010 .

[88]  M. Shen,et al.  Emerging opportunities and challenges in phenology: a review , 2016 .

[89]  J. Canadell,et al.  Greening of the Earth and its drivers , 2016 .

[90]  B. Erasmus,et al.  Double jeopardy: The dichotomy of fuelwood use in rural South Africa , 2013 .

[91]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[92]  Nadine Gobron,et al.  Exploiting the MODIS albedos with the Two-stream Inversion Package (JRC-TIP): 1. Effective leaf area index, vegetation, and soil properties , 2011 .

[93]  Charlie M. Shackleton,et al.  The importance of non-timber forest products in rural livelihood security and as safety nets: a review of evidence from South Africa , 2004 .

[94]  E. Witkowski,et al.  Land-use impacts on woody plant density and diversity in an African savanna charcoal production region , 2012 .

[95]  María Amparo Gilabert,et al.  Noise Reduction and Gap Filling of fAPAR Time Series Using an Adapted Local Regression Filter , 2014, Remote. Sens..

[96]  P. Atkinson,et al.  Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology , 2012 .

[97]  Moses Azong Cho,et al.  Mapping tree species composition in South African savannas using an integrated airborne spectral and LiDAR system , 2012 .

[98]  Gregory Asner,et al.  Hyper-Temporal C-Band SAR for Baseline Woody Structural Assessments in Deciduous Savannas , 2016, Remote. Sens..

[99]  Gregory P. Asner,et al.  What lies beneath: detecting sub-canopy changes in savanna woodlands using a three-dimensional classification method , 2015 .

[100]  N. Lomb Least-squares frequency analysis of unequally spaced data , 1976 .

[101]  J. Scargle Studies in astronomical time series analysis. III - Fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data , 1989 .

[102]  Gregory Asner,et al.  Indirect Estimation of Structural Parameters in South African Forests Using MISR-HR and LiDAR Remote Sensing Data , 2018, Remote. Sens..

[103]  Massimo Menenti,et al.  Mapping vegetation-soil-climate complexes in southern Africa using temporal Fourier analysis of NOAA-AVHRR NDVI data , 2000 .

[104]  Michele Meroni,et al.  Remote Sensing Based Yield Estimation in a Stochastic Framework - Case Study of Durum Wheat in Tunisia , 2013, Remote. Sens..

[105]  Nadine Gobron,et al.  Exploiting the MODIS albedos with the Two‐stream Inversion Package (JRC‐TIP): 2. Fractions of transmitted and absorbed fluxes in the vegetation and soil layers , 2011 .