Constant surface tension simulations of lipid bilayers: The sensitivity of surface areas and compressibilities

Eight molecular dynamics simulations of a hydrated lipid bilayer have been carried out differing only in the applied surface tension, γ, defining the boundary conditions of the periodic cell. The calculated surface area per molecule and deuterium order parameter profile are found to depend strongly on γ. We present several methods to calculate the area compressibility modulus, KA, from the simulations. Equivalence between the constant area and constant surface tension ensembles is investigated by comparing the present simulations with earlier work from our laboratories and we find simulation results to depend much more strongly on the specified surface area or surface tension than on the ensemble employed.

[1]  J. Seelig,et al.  The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. , 1974, Biochemistry.

[2]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[3]  Wataru Shinoda,et al.  Molecular dynamics simulation of the dipalmitoylphosphatidylcholine (DPPC) lipid bilayer in the fluid phase using the Nosé-Parrinello-Rahman NPT ensemble , 1995 .

[4]  Wataru Shinoda,et al.  A Voronoi analysis of lipid area fluctuation in a bilayer , 1998 .

[5]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[6]  Richard W. Pastor,et al.  Molecular dynamics and Monte Carlo simulations of lipid bilayers , 1994 .

[7]  R. Pastor,et al.  On simulating lipid bilayers with an applied surface tension: periodic boundary conditions and undulations. , 1996, Biophysical journal.

[8]  F. Jähnig,et al.  What is the surface tension of a lipid bilayer membrane? , 1996, Biophysical journal.

[9]  Robert Zwanzig,et al.  STATISTICAL ERROR DUE TO FINITE TIME AVERAGING IN COMPUTER EXPERIMENTS. , 1969 .

[10]  Bernard R. Brooks,et al.  Computer simulation of liquid/liquid interfaces. I. Theory and application to octane/water , 1995 .

[11]  R. Pastor,et al.  Computer simulation of liquid/liquid interfaces. II. Surface tension-area dependence of a bilayer and monolayer , 1995 .

[12]  Richard W. Pastor,et al.  Computer Simulation of a DPPC Phospholipid Bilayer: Structural Changes as a Function of Molecular Surface Area , 1997 .

[13]  Benoît Roux,et al.  Biological membranes : a molecular perspective from computation and experiment , 1996 .

[14]  M. Klein,et al.  Constant pressure and temperature molecular dynamics simulation of a fully hydrated liquid crystal phase dipalmitoylphosphatidylcholine bilayer. , 1995, Biophysical journal.

[15]  E. Dufourc,et al.  Restatement of order parameters in biomembranes: calculation of C-C bond order parameters from C-D quadrupolar splittings. , 1995, Biophysical journal.

[16]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[17]  R. Suter,et al.  X-ray structure determination of fully hydrated L alpha phase dipalmitoylphosphatidylcholine bilayers. , 1996, Biophysical journal.

[18]  William H. Press,et al.  Numerical recipes , 1990 .

[19]  Evans,et al.  Entropy-driven tension and bending elasticity in condensed-fluid membranes. , 1990, Physical review letters.

[20]  P. Huang,et al.  Molecular dynamics simulations of phospholipid bilayers. , 1994, Journal of biomolecular structure & dynamics.

[21]  H. Berendsen,et al.  Molecular dynamics simulation of a smectic liquid crystal with atomic detail , 1988 .

[22]  Douglas J. Tobias,et al.  Atomic-scale molecular dynamics simulations of lipid membranes , 1997 .

[23]  J. Nagle,et al.  Area/lipid of bilayers from NMR. , 1993, Biophysical journal.

[24]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[25]  E. Jakobsson,et al.  Incorporation of surface tension into molecular dynamics simulation of an interface: a fluid phase lipid bilayer membrane. , 1995, Biophysical journal.

[26]  H. Strey,et al.  Membrane lateral compressibility determined by NMR and x-ray diffraction: effect of acyl chain polyunsaturation. , 1997, Biophysical journal.

[27]  S H White,et al.  Small phospholipid vesicles: internal pressure, surface tension, and surface free energy. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Klein,et al.  Molecular dynamics investigation of the structure of a fully hydrated gel-phase dipalmitoylphosphatidylcholine bilayer. , 1996, Biophysical journal.

[29]  D. Marsh Renormalization of the tension and area expansion modulus in fluid membranes. , 1997, Biophysical journal.

[30]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[31]  H. Berendsen,et al.  Molecular dynamics simulations of a fully hydrated dipalmitoylphosphatidylcholine bilayer with different macroscopic boundary conditions and parameters , 1996 .