Integral Invariants for Shape Matching

For shapes represented as closed planar contours, we introduce a class of functionals which are invariant with respect to the Euclidean group and which are obtained by performing integral operations. While such integral invariants enjoy some of the desirable properties of their differential counterparts, such as locality of computation (which allows matching under occlusions) and uniqueness of representation (asymptotically), they do not exhibit the noise sensitivity associated with differential quantities and, therefore, do not require presmoothing of the input shape. Our formulation allows the analysis of shapes at multiple scales. Based on integral invariants, we define a notion of distance between shapes. The proposed distance measure can be computed efficiently and allows warping the shape boundaries onto each other; its computation results in optimal point correspondence as an intermediate step. Numerical results on shape matching demonstrate that this framework can match shapes despite the deformation of subparts, missing parts and noise. As a quantitative analysis, we report matching scores for shape retrieval from a database

[1]  Luc Van Gool,et al.  Affine/ Photometric Invariants for Planar Intensity Patterns , 1996, ECCV.

[2]  Wageeh Boles,et al.  Recognition of 2D object contours using the wavelet transform zero-crossing representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Nassir Navab,et al.  Relative Affine Structure: Canonical Model for 3D From 2D Geometry and Applications , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Eduardo Bayro-Corrochano,et al.  A new framework for the formation of invariants and multiple-view constraints in computer vision , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[5]  Alfred M. Bruckstein,et al.  Invariant signatures for planar shape recognition under partial occlusion , 1992, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition.

[6]  Thomas H. Reiss,et al.  Recognizing Planar Objects Using Invariant Image Features , 1993, Lecture Notes in Computer Science.

[7]  E. J. Wilczynski Projective Differential Geometry of Curves and Surfaces , 2007 .

[8]  Micha Sharir,et al.  Identification of Partially Obscured Objects in Two and Three Dimensions by Matching Noisy Characteristic Curves , 1987 .

[9]  Miroslaw Pawlak,et al.  On Image Analysis by Moments , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Daniel Cremers,et al.  Kernel Density Estimation and Intrinsic Alignment for Knowledge-Driven Segmentation: Teaching Level Sets to Walk , 2004, DAGM-Symposium.

[11]  Shinji Umeyama Parameterized Point Pattern Matching and Its Application to Recognition of Object Families , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Daniel Cremers,et al.  One-Shot Integral Invariant Shape Priors for Variational Segmentation , 2005, EMMCVPR.

[13]  Hemant D. Tagare,et al.  A geometric criterion for shape-based non-rigid correspondence , 1995, Proceedings of IEEE International Conference on Computer Vision.

[14]  David A. Forsyth,et al.  Invariant Descriptors for 3D Object Recognition and Pose , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Laurent Younes,et al.  Optimal matching between shapes via elastic deformations , 1999, Image Vis. Comput..

[16]  H. Damasio,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence: Special Issue on Perceptual Organization in Computer Vision , 1998 .

[17]  Farzin Mokhtarian,et al.  A Theory of Multiscale, Curvature-Based Shape Representation for Planar Curves , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Philip N. Klein,et al.  On Aligning Curves , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  W. Eric L. Grimson,et al.  Model-based curve evolution technique for image segmentation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[20]  Anuj Srivastava,et al.  Analysis of planar shapes using geodesic paths on shape spaces , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Mireille Boutin,et al.  Numerically Invariant Signature Curves , 1999, International Journal of Computer Vision.

[22]  Longin Jan Latecki,et al.  Shape Similarity Measure Based on Correspondence of Visual Parts , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Alan L. Yuille,et al.  FORMS: A flexible object recognition and modelling system , 1996, International Journal of Computer Vision.

[24]  Jan Flusser,et al.  Pattern recognition by affine moment invariants , 1993, Pattern Recognit..

[25]  David Mumford,et al.  Mathematical theories of shape: do they model perception? , 1991, Optics & Photonics.

[26]  L. Gool,et al.  Semi-differential invariants , 1992 .

[27]  Guillermo Sapiro,et al.  Area and Length Preserving Geometric Invariant Scale-Spaces , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  David Mumford,et al.  2D-Shape Analysis Using Conformal Mapping , 2004, CVPR.

[29]  Philip N. Klein,et al.  A tree-edit-distance algorithm for comparing simple, closed shapes , 2000, SODA '00.

[30]  Roberto Manduchi,et al.  Stereo Without Search , 1996, ECCV.

[31]  David A. Forsyth,et al.  Planar object recognition using projective shape representation , 1995, International Journal of Computer Vision.

[32]  Alain Trouvé,et al.  Diffeomorphic Matching Problems in One Dimension: Designing and Minimizing Matching Functionals , 2000, ECCV.

[33]  Haim J. Wolfson On curve matching , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Ehud Rivlin,et al.  Scale space semi-local invariants , 1997, Image Vis. Comput..

[35]  Daniel Cremers,et al.  Shape statistics in kernel space for variational image segmentation , 2003, Pattern Recognit..

[36]  Alfred M. Bruckstein,et al.  Similarity-invariant signatures for partially occluded planar shapes , 1992, International Journal of Computer Vision.

[37]  Jorge S. Marques,et al.  Shape alignment -- Optimal initial point and pose estimation , 1997, Pattern Recognit. Lett..

[38]  David A. Forsyth,et al.  Projectively invariant representations using implicit algebraic curves , 1991, Image Vis. Comput..

[39]  T. A. Springer The Algebra of Invariants , 2007 .

[40]  Daphna Weinshall,et al.  Flexible Syntactic Matching of Curves and Its Application to Automatic Hierarchical Classification of Silhouettes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Feng Lin,et al.  Representations that uniquely characterize images modulo translation, rotation, and scaling , 1996, Pattern Recognit. Lett..

[42]  Philip N. Klein,et al.  Alignment-Based Recognition of Shape Outlines , 2001, IWVF.

[43]  Guo Lei,et al.  Recognition of planar objects in 3-D space from single perspective views using cross ratio , 1990, IEEE Trans. Robotics Autom..

[44]  Luc Van Gool,et al.  Recognition and semi-differential invariants , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[45]  Mandyam D. Srinath,et al.  Partial Shape Classification Using Contour Matching in Distance Transformation , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Its'hak Dinstein,et al.  Matching of partially occluded planar curves , 1995, Pattern Recognit..

[47]  P. Olver Equivalence, Invariants, and Symmetry: References , 1995 .

[48]  Muge M. Bakircioglu,et al.  Curve matching on brain surfaces using frenet distances , 1998, Human brain mapping.

[49]  Farzin Mokhtarian,et al.  Scale-Based Description and Recognition of Planar Curves and Two-Dimensional Shapes , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Dmitry Chetverikov,et al.  Matching for Shape Defect Detection , 1999, CAIP.

[51]  Timothy F. Cootes,et al.  A minimum description length approach to statistical shape modeling , 2002, IEEE Transactions on Medical Imaging.

[52]  Nikos Paragios,et al.  Shape Priors for Level Set Representations , 2002, ECCV.

[53]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[54]  Lars Nielsen,et al.  Projective area-invariants as an extension of the cross-ratio , 1991, CVGIP Image Underst..

[55]  Isaac Weiss Noise-Resistant Invariants of Curves , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[56]  Olivier D. Faugeras,et al.  HYPER: A New Approach for the Recognition and Positioning of Two-Dimensional Objects , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[57]  Olivier D. Faugeras,et al.  Statistical shape influence in geodesic active contours , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[58]  J. Dieudonne,et al.  Invariant theory, old and new , 1971 .

[59]  Benjamin B. Kimia,et al.  Symmetry-Based Indexing of Image Databases , 1998, J. Vis. Commun. Image Represent..

[60]  Stan Z. Li Shape Matching Based on Invariants , 2007 .

[61]  Stefano Soatto,et al.  Integral Invariant Signatures , 2004, ECCV.

[62]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[63]  Tyng-Luh Liu,et al.  Approximate tree matching and shape similarity , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[64]  Alberto Del Bimbo,et al.  Visual Image Retrieval by Elastic Matching of User Sketches , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[65]  Luc Van Gool,et al.  Matching of 3-D curves using semi-differential invariants , 1995, Proceedings of IEEE International Conference on Computer Vision.

[66]  S. Chiba,et al.  Dynamic programming algorithm optimization for spoken word recognition , 1978 .

[67]  David A. Forsyth,et al.  3D Object Recognition Using Invariance , 1995, Artif. Intell..

[68]  Jan-Olof Eklundh,et al.  Shape Representation by Multiscale Contour Approximation , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[69]  Wesley E. Snyder,et al.  Application of Affine-Invariant Fourier Descriptors to Recognition of 3-D Objects , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[70]  Steven Haker,et al.  Differential and Numerically Invariant Signature Curves Applied to Object Recognition , 1998, International Journal of Computer Vision.

[71]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[72]  金谷 健一 Group-theoretical methods in image understanding , 1990 .

[73]  Hanns Schulz-Mirbach,et al.  Invariant Features for Gray Scale Images , 1995, DAGM-Symposium.

[74]  David A. Forsyth,et al.  Canonical Frames for Planar Object Recognition , 1992, ECCV.

[75]  Stefano Soatto,et al.  A Pseudo-distance for Shape Priors in Level Set Segmentation , 2003 .

[76]  Ralph Roskies,et al.  Fourier Descriptors for Plane Closed Curves , 1972, IEEE Transactions on Computers.

[77]  A. Dervieux,et al.  A finite element method for the simulation of a Rayleigh-Taylor instability , 1980 .

[78]  Ronald-Bryan O. Alferez,et al.  Geometric and Illumination Invariants for Object Recognition , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[79]  Reiner Lenz,et al.  Group Theoretical Methods in Image Processing , 1990, Lecture Notes in Computer Science.

[80]  Roberto Cipolla,et al.  Affine integral invariants for extracting symmetry axes , 1997, Image Vis. Comput..

[81]  Guillermo Sapiro,et al.  Affine invariant scale-space , 1993, International Journal of Computer Vision.

[82]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[83]  Alain Pitiot,et al.  Learning Object Correspondences with the Observed Transport Shape Measure , 2003, IPMI.

[84]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[85]  Andrew Zisserman,et al.  Geometric invariance in computer vision , 1992 .

[86]  Kaleem Siddiqi,et al.  Matching Hierarchical Structures Using Association Graphs , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[87]  Stefan Carlsson,et al.  Order Structure, Correspondence, and Shape Based Categories , 1999, Shape, Contour and Grouping in Computer Vision.

[88]  Ronen Basri,et al.  Determining the similarity of deformable shapes , 1998, Vision Research.

[89]  C. Hann,et al.  Projective Curvature and Integral Invariants , 2002 .

[90]  Hiroshi Murase,et al.  A lie group theoretic approach to the invariance problem in feature extraction and object recognition , 1991, Pattern Recognit. Lett..

[91]  C. E. Springer,et al.  Geometry and Analysis of Projective Spaces , 1967 .

[92]  Nicholas Ayache,et al.  Tracking Points on Deformable Objects Using Curvature Information , 1992, ECCV.

[93]  Ali Shokoufandeh,et al.  Shock Graphs and Shape Matching , 1998, International Journal of Computer Vision.

[94]  D. Kendall,et al.  The Riemannian Structure of Euclidean Shape Spaces: A Novel Environment for Statistics , 1993 .

[95]  Patrizio Frosini,et al.  On the use of size functions for shape analysis , 1993, [1993] Proceedings IEEE Workshop on Qualitative Vision.

[96]  Jean-Michel Morel,et al.  Integral and local affine invariant parameter and application to shape recognition , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[97]  D. Mumford,et al.  Geometric Invariant Theory , 2011 .