Bridge to the stars: A mission concept to an interstellar object
暂无分享,去创建一个
Damon Landau | Ashley Schoenfeld | Karl L. Mitchell | Julie C. Castillo-Rogez | Jeffrey Stuart | William D. Smythe | Ariel N. Deutsch | Charles Budney | Daniel Brack | Kimberly Moore | Samuel Courville | Sierra N. Ferguson | Kristie Llera | Rachana Agrawal | Peter B. Buhler | Kyle Connour | Ellen C. Czaplinski | Michael DeLuca | Noah Hammond | Donald Kuettel | Angela G. Marusiak | S. Nerozzi | J. D. Tarnas | Alexander Thelen | W. Smythe | D. Brack | A. Deutsch | J. Castillo‐Rogez | K. Mitchell | C. Budney | J. Tarnas | J. Stuart | D. Landau | P. Buhler | A. Thelen | A. Schoenfeld | S. Courville | S. Nerozzi | R. Agrawal | K. Moore | A. Marusiak | N. Hammond | K. LLera | E. Czaplinski | M. DeLuca | K. Connour | S. Ferguson | Donald H. Kuettel | K. Llera
[1] Mikael Granvik,et al. REALISTIC DETECTABILITY OF CLOSE INTERSTELLAR COMETS , 2011, 1607.08162.
[2] Riccardo Scarpa,et al. Interstellar Visitors: A Physical Characterization of Comet C/2019 Q4 (Borisov) with OSIRIS at the 10.4 m GTC , 2019, Research Notes of the AAS.
[3] R. Wieler,et al. Noble Gases in the Solar System , 2002 .
[4] Karen J. Meech,et al. Searching for water ice in the coma of interstellar object 2I/Borisov , 2019 .
[5] J. Najita,et al. Organic Molecules and Water in the Planet Formation Region of Young Circumstellar Disks , 2008, Science.
[6] Larry Denneau,et al. An Observational Upper Limit on the Interstellar Number Density of Asteroids and Comets , 2017, 1702.02237.
[7] E. Weigle,et al. The OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS): Spectral Maps of the Asteroid Bennu , 2017, 1703.10574.
[8] Sascha Kempf,et al. Mass spectrometry of hyper-velocity impacts of organic micrograins. , 2009, Rapid communications in mass spectrometry : RCM.
[9] S. Mashchenko,et al. Modelling the light curve of ‘Oumuamua: evidence for torque and disc-like shape , 2019, Monthly Notices of the Royal Astronomical Society.
[10] R N Zare,et al. Identification of Complex Aromatic Molecules in Individual Interplanetary Dust Particles , 1993, Science.
[11] Z. Benkhaldoun,et al. 2I/Borisov: A C2-depleted interstellar comet , 2019, Astronomy & Astrophysics.
[12] Konstantin Batygin,et al. On the Consequences of the Detection of an Interstellar Asteroid , 2017, 1711.02260.
[13] Marco Micheli,et al. Detection of CN Gas in Interstellar Object 2I/Borisov , 2019, The Astrophysical Journal.
[14] John Asher Johnson,et al. Origins of Hot Jupiters , 2018, Annual Review of Astronomy and Astrophysics.
[15] Mark A. Sephton,et al. A noble record , 2005 .
[16] Gregory Laughlin,et al. The Feasibility and Benefits of In Situ Exploration of ‘Oumuamua-like Objects , 2018, 1803.07022.
[17] Larry Denneau,et al. A brief visit from a red and extremely elongated interstellar asteroid , 2017, Nature.
[18] Robert Jedicke,et al. Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U1 ‘Oumuamua , 2017, Nature Astronomy.
[19] Fred C. Adams,et al. Detection of Diatomic Carbon in 2I/Borisov , 2019 .
[20] G. Fazio,et al. Spitzer Observations of Interstellar Object 1I/‘Oumuamua , 2018, The Astronomical Journal.
[21] Robin Wordsworth,et al. Jupiter's Composition Suggests its Core Assembled Exterior to the N2 Snowline , 2019, The Astronomical Journal.
[22] Robert Jedicke,et al. The natural history of ‘Oumuamua , 2019, Nature Astronomy.
[23] J. E. Richards,et al. The Cassini Ion and Neutral Mass Spectrometer (INMS) Investigation , 2004 .
[24] U. Fink,et al. The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta , 2015, Science.
[25] Andrew Steele,et al. Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry , 2015, Science.
[26] M. Ćuk,et al. 1I/‘Oumuamua as a Tidal Disruption Fragment from a Binary Star System , 2017, 1712.01823.
[27] Erik Asphaug,et al. Growth and Evolution of Asteroids , 2009 .
[28] Didier Despois,et al. Ethylene glycol in comet C/1995 O1 (Hale-Bopp) , 2004 .
[29] E. Jehin,et al. The 16OH/18OH and OD/OH isotope ratios in comet C/2002 T7 (LINEAR) , 2008, 0809.4300.
[30] Aaron Do,et al. Interstellar Interlopers: Number Density and Origin of ‘Oumuamua-like Objects , 2018, 1801.02821.
[31] T. Joseph W. Lazio,et al. Search for OH 18 cm Radio Emission from 1I/2017 U1 with the Green Bank Telescope , 2018, 1803.10187.
[32] W. Goddard,et al. Hypervelocity impact effect of molecules from Enceladus' plume and Titan's upper atmosphere on NASA's Cassini spectrometer from reactive dynamics simulation. , 2012, Physical review letters.
[33] Susanne Pfalzner,et al. Cluster dynamics largely shapes protoplanetary disc sizes , 2016 .
[34] Jorge Guillermo Reyna Almandos,et al. Spectral Analysis of Moderately Charged Rare-Gas Atoms , 2017 .
[35] Y. Medvedev,et al. Dust bombardment can explain the extremely elongated shape of 1I/’Oumuamua and the lack of interstellar objects , 2018, Monthly Notices of the Royal Astronomical Society: Letters.
[36] Hakan Svedhem,et al. Venus Express mission , 2009 .
[37] Scott A. Sandford,et al. Detection of cometary amines in samples returned by Stardust , 2008 .
[38] Anil Bhardwaj,et al. Radial distribution of production rates, loss rates and densities corresponding to ion masses ≤ 40 amu in the inner coma of Comet Halley : Composition and chemistry , 2005, astro-ph/0504667.
[39] N. Bridges,et al. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests , 2012 .
[40] Peter Filzmoser,et al. Similarities in element content between comet 67P/Churyumov–Gerasimenko coma dust and selected meteorite samples , 2017 .
[41] Ralf Kotulla,et al. Interstellar Interloper 1I/2017 U1: Observations from the NOT and WIYN Telescopes , 2017, 1711.05687.
[42] Hisayoshi Yurimoto,et al. New extreme 16O-rich reservoir in the early solar system , 2003 .
[43] W. F. Huebner,et al. A Model of P/Tempel 2 With Dust and Detailed Chemistry , 1992 .
[44] Ming-Chang Liu,et al. Isotopic records in CM hibonites: Implications for timescales of mixing of isotope reservoirs in the solar nebula , 2009 .
[45] Zouhair Benkhaldoun,et al. Interstellar comet 2I/Borisov as seen by MUSE: C 2 , NH 2 and red CN detections , 2020, 2001.11605.
[46] K. Tsiganis,et al. Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.
[47] Mohamad Ali-Dib,et al. Ejection of rocky and icy material from binary star systems: implications for the origin and composition of 1I/‘Oumuamua , 2017, 1712.04435.
[48] Alexander G. G. M. Tielens,et al. Interstellar Polycyclic Aromatic Hydrocarbon Molecules , 2008 .
[49] R. Reinhard. The Giotto encounter with comet Halley , 1986 .
[50] Robert N. Clayton. Oxygen Isotopes in Meteorites , 1993 .
[51] D. J. Andrews,et al. CHO-bearing organic compounds at the surface of 67P/Churyumov-Gerasimenko revealed by Ptolemy , 2015, Science.
[52] Jorge I. Zuluaga,et al. A General Method for Assessing the Origin of Interstellar Small Bodies: The Case of 1I/2017 U1 (‘Oumuamua) , 2017, 1711.09397.
[53] Peter H. Schultz,et al. The distribution of water ice in the interior of Comet Tempel 1 , 2007 .
[54] James W. Baer,et al. An Overview of the Instrument Suite for the Deep Impact Mission , 2005 .
[55] Hisayoshi Yurimoto,et al. Molecular Cloud Origin for the Oxygen Isotope Heterogeneity in the Solar System , 2004, Science.
[56] Matthew Holman,et al. Long-Term Stability of Planets in Binary Systems , 1996 .
[57] M. T. Bannister,et al. The carbon monoxide-rich interstellar comet 2I/Borisov , 2020, 2004.08972.
[58] David E. Trilling,et al. Implications for Planetary System Formation from Interstellar Object 1I/2017 U1 (‘Oumuamua) , 2017, 1711.01344.
[59] H. Melosh,et al. Deep Impact: Excavating Comet Tempel 1 , 2005, Science.
[60] M. J. Harris,et al. Oxygen isotopic abundances in the atmospheres of seven red giant stars. , 1984 .
[61] Alessandro Morbidelli,et al. A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.
[62] Mark R. Morris,et al. HIGH-PRECISION C17O, C18O, AND C16O MEASUREMENTS IN YOUNG STELLAR OBJECTS: ANALOGUES FOR CO SELF-SHIELDING IN THE EARLY SOLAR SYSTEM , 2009, 0906.1024.
[63] Raymond E. Arvidson,et al. 2001 Mars Odyssey Mission Summary , 2004 .
[64] V. E. Hamilton,et al. The OSIRIS-REx Thermal Emission Spectrometer (OTES) Instrument , 2018, Space Science Reviews.
[65] Raymond E. Arvidson,et al. Overview of the Mars Global Surveyor mission , 2001 .
[66] Ian Thomas,et al. Expected performances of the NOMAD/ExoMars instrument , 2016 .
[67] D. James,et al. The Size Distribution of Near-Earth Objects Larger Than 10 m , 2017, 1707.04066.
[68] Hans Balsiger,et al. Interpretation of the ion mass spectra in the mass per charge range 25-35 amu/e obtained in the inner coma of Halley's comet by the HIS-sensor of the Giotto IMS experiment , 1991 .
[69] Edwin L. Turner,et al. WILL THE LARGE SYNOPTIC SURVEY TELESCOPE DETECT EXTRA-SOLAR PLANETESIMALS ENTERING THE SOLAR SYSTEM? , 2009, 0908.3948.
[70] ReddyVidya Sagar,et al. The SpaceX Effect , 2018 .
[71] Andreas M. Hein,et al. Project Lyra: Sending a Spacecraft to 1I/'Oumuamua (former A/2017 U1), the Interstellar Asteroid , 2017 .
[72] K. F. Long. Project Icarus: The First Unmanned Interstellar Mission - Robotic Expansion and Technological Growth , 2011 .
[73] Hirotaka Sawada,et al. Small carry-on impactor of Hayabusa2 mission , 2013 .
[74] Angioletta Coradini,et al. Dawn Mission to Vesta and Ceres , 2007 .
[75] Konstantin Batygin,et al. On the Anomalous Acceleration of 1I/2017 U1 ‘Oumuamua , 2019, The Astrophysical Journal.
[76] Harold F. Levison,et al. Capture of the Sun's Oort Cloud from Stars in Its Birth Cluster , 2010, Science.
[77] Steven B. Charnley,et al. The Chemical Composition of Comets—Emerging Taxonomies and Natal Heritage , 2011 .
[78] Mark Shirley,et al. The Lunar Crater Observation and Sensing Satellite (LCROSS) Payload Development and Performance in Flight , 2012 .
[79] P. A. Dybczy'nski,et al. Investigating the dynamical history of the interstellar object 'Oumuamua , 2017, 1711.06618.
[80] F. Montmessin,et al. The Imaging Ultraviolet Spectrograph (IUVS) for the MAVEN Mission , 2015 .
[81] P. Wiegert,et al. The Dynamics of Interstellar Asteroids and Comets within the Galaxy: An Assessment of Local Candidate Source Regions for 1I/’Oumuamua and 2I/Borisov , 2019, The Astronomical Journal.
[82] R. C. Wiens,et al. The Oxygen Isotopic Composition of the Sun Inferred from Captured Solar Wind , 2011, Science.
[83] Erik Asphaug,et al. Hit-and-run planetary collisions , 2006, Nature.
[84] Marla H. Moore,et al. IR Spectra of Irradiated Cometary Ice Analogues Containing Methanol: A New Assignment, a Reassignment, and a Nonassignment , 2000 .
[85] A. Davis. Stardust in meteorites , 2011, Proceedings of the National Academy of Sciences.
[86] Davide Farnocchia,et al. Non-gravitational acceleration in the trajectory of 1I/2017 U1 (‘Oumuamua) , 2018, Nature.
[87] Hajime Yano,et al. Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples , 2006, Science.
[88] Qicheng Zhang,et al. Prospects for Backtracing 1I/‘Oumuamua and Future Interstellar Objects , 2017, 1712.08059.
[89] K. J. Meech,et al. Spitzer Spectral Observations of the Deep Impact Ejecta , 2006, Science.
[90] B. Moore,et al. The fate of planetesimal discs in young open clusters: implications for 1I/’Oumuamua, the Kuiper belt, the Oort cloud, and more , 2019, Monthly Notices of the Royal Astronomical Society.
[91] Davide Farnocchia,et al. A search for the origin of the interstellar comet 2I/Borisov , 2019 .
[92] Qicheng Zhang,et al. 1I/2017 U1 (‘Oumuamua) is Hot: Imaging, Spectroscopy, and Search of Meteor Activity , 2017, 1711.02320.