Bridge to the stars: A mission concept to an interstellar object

Abstract Exoplanet discoveries since the mid-1990’s have revealed an astounding diversity of planetary systems. Studying these systems is essential to understanding planetary formation processes, as well as the development of life in the universe. Unfortunately, humanity can only observe limited aspects of exoplanetary systems by telescope, and the significant distances between stars presents a barrier to in situ exploration. In this study, we propose an alternative path to gain insight into exoplanetary systems: Bridge, a mission concept design to fly by an interstellar object as it passes through our solar system. Designed as a New Frontiers-class mission during the National Aeronautics and Space Administration (NASA) Planetary Science Summer School, Bridge would provide a unique opportunity to gain insight into potential physical, chemical, and biological differences between solar systems as well as the possible exchange of planetary materials between them. Bridge employs ultraviolet/visible, near-infrared, and mid-infrared point spectrometers, a visible camera, and a guided impactor. We also provide a quantitative Monte Carlo analysis that estimates wait times for a suitable target, and examines key trades between ground storage and a parking orbit, power sources, inner versus outer solar system encounters, and launch criteria. Due to the fleeting nature of interstellar objects, reaching an interstellar object may require an extended ground storage phase for the spacecraft until a suitable ISO is discovered, followed by a rapid response launch strategy. To enable rapid response missions designed to intercept such unique targets, language would need to be added to future NASA announcements of opportunity such that ground storage and rapid response would be allowable components of a proposed mission.

[1]  Mikael Granvik,et al.  REALISTIC DETECTABILITY OF CLOSE INTERSTELLAR COMETS , 2011, 1607.08162.

[2]  Riccardo Scarpa,et al.  Interstellar Visitors: A Physical Characterization of Comet C/2019 Q4 (Borisov) with OSIRIS at the 10.4 m GTC , 2019, Research Notes of the AAS.

[3]  R. Wieler,et al.  Noble Gases in the Solar System , 2002 .

[4]  Karen J. Meech,et al.  Searching for water ice in the coma of interstellar object 2I/Borisov , 2019 .

[5]  J. Najita,et al.  Organic Molecules and Water in the Planet Formation Region of Young Circumstellar Disks , 2008, Science.

[6]  Larry Denneau,et al.  An Observational Upper Limit on the Interstellar Number Density of Asteroids and Comets , 2017, 1702.02237.

[7]  E. Weigle,et al.  The OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS): Spectral Maps of the Asteroid Bennu , 2017, 1703.10574.

[8]  Sascha Kempf,et al.  Mass spectrometry of hyper-velocity impacts of organic micrograins. , 2009, Rapid communications in mass spectrometry : RCM.

[9]  S. Mashchenko,et al.  Modelling the light curve of ‘Oumuamua: evidence for torque and disc-like shape , 2019, Monthly Notices of the Royal Astronomical Society.

[10]  R N Zare,et al.  Identification of Complex Aromatic Molecules in Individual Interplanetary Dust Particles , 1993, Science.

[11]  Z. Benkhaldoun,et al.  2I/Borisov: A C2-depleted interstellar comet , 2019, Astronomy & Astrophysics.

[12]  Konstantin Batygin,et al.  On the Consequences of the Detection of an Interstellar Asteroid , 2017, 1711.02260.

[13]  Marco Micheli,et al.  Detection of CN Gas in Interstellar Object 2I/Borisov , 2019, The Astrophysical Journal.

[14]  John Asher Johnson,et al.  Origins of Hot Jupiters , 2018, Annual Review of Astronomy and Astrophysics.

[15]  Mark A. Sephton,et al.  A noble record , 2005 .

[16]  Gregory Laughlin,et al.  The Feasibility and Benefits of In Situ Exploration of ‘Oumuamua-like Objects , 2018, 1803.07022.

[17]  Larry Denneau,et al.  A brief visit from a red and extremely elongated interstellar asteroid , 2017, Nature.

[18]  Robert Jedicke,et al.  Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U1 ‘Oumuamua , 2017, Nature Astronomy.

[19]  Fred C. Adams,et al.  Detection of Diatomic Carbon in 2I/Borisov , 2019 .

[20]  G. Fazio,et al.  Spitzer Observations of Interstellar Object 1I/‘Oumuamua , 2018, The Astronomical Journal.

[21]  Robin Wordsworth,et al.  Jupiter's Composition Suggests its Core Assembled Exterior to the N2 Snowline , 2019, The Astronomical Journal.

[22]  Robert Jedicke,et al.  The natural history of ‘Oumuamua , 2019, Nature Astronomy.

[23]  J. E. Richards,et al.  The Cassini Ion and Neutral Mass Spectrometer (INMS) Investigation , 2004 .

[24]  U. Fink,et al.  The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta , 2015, Science.

[25]  Andrew Steele,et al.  Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry , 2015, Science.

[26]  M. Ćuk,et al.  1I/‘Oumuamua as a Tidal Disruption Fragment from a Binary Star System , 2017, 1712.01823.

[27]  Erik Asphaug,et al.  Growth and Evolution of Asteroids , 2009 .

[28]  Didier Despois,et al.  Ethylene glycol in comet C/1995 O1 (Hale-Bopp) , 2004 .

[29]  E. Jehin,et al.  The 16OH/18OH and OD/OH isotope ratios in comet C/2002 T7 (LINEAR) , 2008, 0809.4300.

[30]  Aaron Do,et al.  Interstellar Interlopers: Number Density and Origin of ‘Oumuamua-like Objects , 2018, 1801.02821.

[31]  T. Joseph W. Lazio,et al.  Search for OH 18 cm Radio Emission from 1I/2017 U1 with the Green Bank Telescope , 2018, 1803.10187.

[32]  W. Goddard,et al.  Hypervelocity impact effect of molecules from Enceladus' plume and Titan's upper atmosphere on NASA's Cassini spectrometer from reactive dynamics simulation. , 2012, Physical review letters.

[33]  Susanne Pfalzner,et al.  Cluster dynamics largely shapes protoplanetary disc sizes , 2016 .

[34]  Jorge Guillermo Reyna Almandos,et al.  Spectral Analysis of Moderately Charged Rare-Gas Atoms , 2017 .

[35]  Y. Medvedev,et al.  Dust bombardment can explain the extremely elongated shape of 1I/’Oumuamua and the lack of interstellar objects , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[36]  Hakan Svedhem,et al.  Venus Express mission , 2009 .

[37]  Scott A. Sandford,et al.  Detection of cometary amines in samples returned by Stardust , 2008 .

[38]  Anil Bhardwaj,et al.  Radial distribution of production rates, loss rates and densities corresponding to ion masses ≤ 40 amu in the inner coma of Comet Halley : Composition and chemistry , 2005, astro-ph/0504667.

[39]  N. Bridges,et al.  The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests , 2012 .

[40]  Peter Filzmoser,et al.  Similarities in element content between comet 67P/Churyumov–Gerasimenko coma dust and selected meteorite samples , 2017 .

[41]  Ralf Kotulla,et al.  Interstellar Interloper 1I/2017 U1: Observations from the NOT and WIYN Telescopes , 2017, 1711.05687.

[42]  Hisayoshi Yurimoto,et al.  New extreme 16O-rich reservoir in the early solar system , 2003 .

[43]  W. F. Huebner,et al.  A Model of P/Tempel 2 With Dust and Detailed Chemistry , 1992 .

[44]  Ming-Chang Liu,et al.  Isotopic records in CM hibonites: Implications for timescales of mixing of isotope reservoirs in the solar nebula , 2009 .

[45]  Zouhair Benkhaldoun,et al.  Interstellar comet 2I/Borisov as seen by MUSE: C 2 , NH 2 and red CN detections , 2020, 2001.11605.

[46]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[47]  Mohamad Ali-Dib,et al.  Ejection of rocky and icy material from binary star systems: implications for the origin and composition of 1I/‘Oumuamua , 2017, 1712.04435.

[48]  Alexander G. G. M. Tielens,et al.  Interstellar Polycyclic Aromatic Hydrocarbon Molecules , 2008 .

[49]  R. Reinhard The Giotto encounter with comet Halley , 1986 .

[50]  Robert N. Clayton Oxygen Isotopes in Meteorites , 1993 .

[51]  D. J. Andrews,et al.  CHO-bearing organic compounds at the surface of 67P/Churyumov-Gerasimenko revealed by Ptolemy , 2015, Science.

[52]  Jorge I. Zuluaga,et al.  A General Method for Assessing the Origin of Interstellar Small Bodies: The Case of 1I/2017 U1 (‘Oumuamua) , 2017, 1711.09397.

[53]  Peter H. Schultz,et al.  The distribution of water ice in the interior of Comet Tempel 1 , 2007 .

[54]  James W. Baer,et al.  An Overview of the Instrument Suite for the Deep Impact Mission , 2005 .

[55]  Hisayoshi Yurimoto,et al.  Molecular Cloud Origin for the Oxygen Isotope Heterogeneity in the Solar System , 2004, Science.

[56]  Matthew Holman,et al.  Long-Term Stability of Planets in Binary Systems , 1996 .

[57]  M. T. Bannister,et al.  The carbon monoxide-rich interstellar comet 2I/Borisov , 2020, 2004.08972.

[58]  David E. Trilling,et al.  Implications for Planetary System Formation from Interstellar Object 1I/2017 U1 (‘Oumuamua) , 2017, 1711.01344.

[59]  H. Melosh,et al.  Deep Impact: Excavating Comet Tempel 1 , 2005, Science.

[60]  M. J. Harris,et al.  Oxygen isotopic abundances in the atmospheres of seven red giant stars. , 1984 .

[61]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[62]  Mark R. Morris,et al.  HIGH-PRECISION C17O, C18O, AND C16O MEASUREMENTS IN YOUNG STELLAR OBJECTS: ANALOGUES FOR CO SELF-SHIELDING IN THE EARLY SOLAR SYSTEM , 2009, 0906.1024.

[63]  Raymond E. Arvidson,et al.  2001 Mars Odyssey Mission Summary , 2004 .

[64]  V. E. Hamilton,et al.  The OSIRIS-REx Thermal Emission Spectrometer (OTES) Instrument , 2018, Space Science Reviews.

[65]  Raymond E. Arvidson,et al.  Overview of the Mars Global Surveyor mission , 2001 .

[66]  Ian Thomas,et al.  Expected performances of the NOMAD/ExoMars instrument , 2016 .

[67]  D. James,et al.  The Size Distribution of Near-Earth Objects Larger Than 10 m , 2017, 1707.04066.

[68]  Hans Balsiger,et al.  Interpretation of the ion mass spectra in the mass per charge range 25-35 amu/e obtained in the inner coma of Halley's comet by the HIS-sensor of the Giotto IMS experiment , 1991 .

[69]  Edwin L. Turner,et al.  WILL THE LARGE SYNOPTIC SURVEY TELESCOPE DETECT EXTRA-SOLAR PLANETESIMALS ENTERING THE SOLAR SYSTEM? , 2009, 0908.3948.

[70]  ReddyVidya Sagar,et al.  The SpaceX Effect , 2018 .

[71]  Andreas M. Hein,et al.  Project Lyra: Sending a Spacecraft to 1I/'Oumuamua (former A/2017 U1), the Interstellar Asteroid , 2017 .

[72]  K. F. Long Project Icarus: The First Unmanned Interstellar Mission - Robotic Expansion and Technological Growth , 2011 .

[73]  Hirotaka Sawada,et al.  Small carry-on impactor of Hayabusa2 mission , 2013 .

[74]  Angioletta Coradini,et al.  Dawn Mission to Vesta and Ceres , 2007 .

[75]  Konstantin Batygin,et al.  On the Anomalous Acceleration of 1I/2017 U1 ‘Oumuamua , 2019, The Astrophysical Journal.

[76]  Harold F. Levison,et al.  Capture of the Sun's Oort Cloud from Stars in Its Birth Cluster , 2010, Science.

[77]  Steven B. Charnley,et al.  The Chemical Composition of Comets—Emerging Taxonomies and Natal Heritage , 2011 .

[78]  Mark Shirley,et al.  The Lunar Crater Observation and Sensing Satellite (LCROSS) Payload Development and Performance in Flight , 2012 .

[79]  P. A. Dybczy'nski,et al.  Investigating the dynamical history of the interstellar object 'Oumuamua , 2017, 1711.06618.

[80]  F. Montmessin,et al.  The Imaging Ultraviolet Spectrograph (IUVS) for the MAVEN Mission , 2015 .

[81]  P. Wiegert,et al.  The Dynamics of Interstellar Asteroids and Comets within the Galaxy: An Assessment of Local Candidate Source Regions for 1I/’Oumuamua and 2I/Borisov , 2019, The Astronomical Journal.

[82]  R. C. Wiens,et al.  The Oxygen Isotopic Composition of the Sun Inferred from Captured Solar Wind , 2011, Science.

[83]  Erik Asphaug,et al.  Hit-and-run planetary collisions , 2006, Nature.

[84]  Marla H. Moore,et al.  IR Spectra of Irradiated Cometary Ice Analogues Containing Methanol: A New Assignment, a Reassignment, and a Nonassignment , 2000 .

[85]  A. Davis Stardust in meteorites , 2011, Proceedings of the National Academy of Sciences.

[86]  Davide Farnocchia,et al.  Non-gravitational acceleration in the trajectory of 1I/2017 U1 (‘Oumuamua) , 2018, Nature.

[87]  Hajime Yano,et al.  Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples , 2006, Science.

[88]  Qicheng Zhang,et al.  Prospects for Backtracing 1I/‘Oumuamua and Future Interstellar Objects , 2017, 1712.08059.

[89]  K. J. Meech,et al.  Spitzer Spectral Observations of the Deep Impact Ejecta , 2006, Science.

[90]  B. Moore,et al.  The fate of planetesimal discs in young open clusters: implications for 1I/’Oumuamua, the Kuiper belt, the Oort cloud, and more , 2019, Monthly Notices of the Royal Astronomical Society.

[91]  Davide Farnocchia,et al.  A search for the origin of the interstellar comet 2I/Borisov , 2019 .

[92]  Qicheng Zhang,et al.  1I/2017 U1 (‘Oumuamua) is Hot: Imaging, Spectroscopy, and Search of Meteor Activity , 2017, 1711.02320.