Mu2e Crystal Calorimeter Readout Electronics: Design and Characterisation

The Mu2e experiment at Fermi National Accelerator Laboratory will search for the charged-lepton flavour-violating neutrinoless conversion of negative muons into electrons in the Coulomb field of an Al nucleus. The conversion electron with a monoenergetic 104.967 MeV signature will be identified by a complementary measurement carried out by a high-resolution tracker and an electromagnetic calorimeter, improving by four orders of magnitude the current single-event sensitivity. The calorimeter—composed of 1348 pure CsI crystals arranged in two annular disks—has a high granularity, 10% energy resolution and 500 ps timing resolution for 100 MeV electrons. The readout, based on large-area UV-extended SiPMs, features a fully custom readout chain, from the analogue front-end electronics to the digitisation boards. The readout electronics design was validated for operation in vacuum and under magnetic fields. An extensive radiation hardness certification campaign certified the FEE design for doses up to 100 krad and 1012 n1MeVeq/cm2 and for single-event effects. A final vertical slice test on the final readout chain was carried out with cosmic rays on a large-scale calorimeter prototype.

[1]  J. Budagov,et al.  The Mu2e Crystal Calorimeter: An Overview , 2022, Instruments.

[2]  M. Cordelli,et al.  An automated QC station for the calibration of the Mu2e calorimeter readout units , 2022, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[3]  S. Donati,et al.  The Readout Electronics of the Mu2e Electromagnetic Calorimeter , 2022, Proceedings of Particles and Nuclei International Conference 2021 — PoS(PANIC2021).

[4]  S. Donati,et al.  Online DAQ and slow control interface for the Mu2e experiment , 2022, Proceedings of The European Physical Society Conference on High Energy Physics — PoS(EPS-HEP2021).

[5]  F. Happacher,et al.  The Digitizer ReAdout Controller (DIRAC) of the Mu2e electromagnetic calorimeter at Fermilab , 2020 .

[6]  J. Budagov,et al.  Design and test of the Mu2e undoped CsI + SiPM crystal calorimeter , 2018, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[7]  L. Morescalchi,et al.  Production and Quality Assurance of the Mu2e Calorimeter Silicon Photomultipliers , 2017, Journal of Physics: Conference Series.