The Rock-Forming Minerals and Macroscale Mechanical Properties of Asteroid Rocks

[1]  J. Rutqvist,et al.  Thermally Induced Microcracks in Granite and Their Effect on the Macroscale Mechanical Behavior , 2023, Journal of Geophysical Research: Solid Earth.

[2]  Xuhai Tang,et al.  Determining Young's modulus of granite using accurate grain-based modeling with microscale rock mechanical experiments , 2022, International Journal of Rock Mechanics and Mining Sciences.

[3]  Lei Sun,et al.  The propagation and interaction of cracks under freeze-thaw cycling in rock-like material , 2022, International Journal of Rock Mechanics and Mining Sciences.

[4]  Xuhai Tang,et al.  Nanoindentation-based characterization of micromechanical properties of greenish mudstone from deep Fushun West open-pit mine (Fushun city, China) , 2022, Geomechanics and Geophysics for Geo-Energy and Geo-Resources.

[5]  Sample return reveals that the asteroid Ryugu is a carbon-rich primitive body , 2022, Nature Astronomy.

[6]  V. Reddy,et al.  Physical Characterization of Metal-rich Near-Earth Asteroids 6178 (1986 DA) and 2016 ED85 , 2021, The Planetary Science Journal.

[7]  A. Witze Success! Mars rover finally collects its first rock core , 2021, Nature.

[8]  Zhihong Zhao,et al.  Effect of Immersion Duration on Shear Behavior of Granite Fractures , 2021, Rock Mechanics and Rock Engineering.

[9]  Yongkang Wu,et al.  Cross-scale characterization of sandstones via statistical nanoindentation: Evaluation of data analytics and upscaling models , 2021 .

[10]  K. Bian,et al.  Investigating the softening of weak interlayers during landslides using nanoindentation experiments and simulations , 2020 .

[11]  M. Rouainia,et al.  Geomechanical characterisation of organic-rich calcareous shale using AFM and nanoindentation , 2020, Rock Mechanics and Rock Engineering.

[12]  J. Wheeler Mechanical phase mapping of the Taza meteorite using correlated high‐speed nanoindentation and EDX , 2020, Journal of Materials Research.

[13]  Yong Wang,et al.  The influences of heating and uniaxial loading on granite subjected to liquid nitrogen cooling , 2020 .

[14]  D. Britt,et al.  Strengths of meteorites—An overview and analysis of available data , 2020, Meteoritics & Planetary Science.

[15]  Dongxiao Zhang,et al.  Influence of Geochemical Features on the Mechanical Properties of Organic Matter in Shale , 2020, Journal of Geophysical Research: Solid Earth.

[16]  F. Amelung,et al.  Towards more realistic values of elastic moduli for volcano modelling , 2020, Journal of Volcanology and Geothermal Research.

[17]  Zeng Zhao,et al.  The progress of extraterrestrial regolith-sampling robots , 2019, Nature Astronomy.

[18]  Xuhai Tang,et al.  Modeling Three-Dimensional Fluid-Driven Propagation of Multiple Fractures using TOUGH-FEMM , 2019, Rock Mechanics and Rock Engineering.

[19]  B. Tokhmechi,et al.  Statistical grid nanoindentation analysis to estimate macro-mechanical properties of the Bakken Shale , 2018 .

[20]  G. Flynn,et al.  Physical properties of the stone meteorites: Implications for the properties of their parent bodies , 2017, Geochemistry.

[21]  P. Michel,et al.  Nanoindenting the Chelyabinsk Meteorite to Learn about Impact Deflection Effects in asteroids , 2016, 1612.07131.

[22]  Luke Borkowski,et al.  Scale-dependent measurements of meteorite strength: Implications for asteroid fragmentation , 2016 .

[23]  K. T. Ramesh,et al.  Dynamic behavior of an ordinary chondrite: The effects of microstructure on strength, failure and fragmentation , 2015 .

[24]  K. Kunze,et al.  A novel EBSD‐based finite‐element wave propagation model for investigating seismic anisotropy: Application to Finero Peridotite, Ivrea‐Verbano Zone, Northern Italy , 2014 .

[25]  C. Martin,et al.  Factors Affecting Crack Initiation in Low Porosity Crystalline Rocks , 2014, Rock Mechanics and Rock Engineering.

[26]  B. Weiss,et al.  Metal phases in ordinary chondrites: Magnetic hysteresis properties and implications for thermal history , 2014 .

[27]  K. T. Ramesh,et al.  The dynamic strength of an ordinary chondrite , 2011 .

[28]  Franz-Josef Ulm,et al.  Grid indentation analysis of composite microstructure and mechanics: Principles and validation , 2006 .

[29]  Franz-Josef Ulm,et al.  Dual-indentation technique for the assessment of strength properties of cohesive-frictional materials , 2006 .

[30]  T. Reichhardt Spacecraft on course to score a first with asteroid samples , 2005, Nature.

[31]  N. Christensen Poisson's ratio and crustal seismology , 1996 .

[32]  M. Zolensky,et al.  Evidence of Thermal Metamorphism on the C, G, B, and F Asteroids , 1993, Science.

[33]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[34]  K. Keil,et al.  Shock metamorphism of ordinary chondrites , 1991 .

[35]  M. Nafi Toksöz,et al.  Velocity and attenuation of seismic waves in two-phase media; Part I, Theoretical formulations , 1974 .

[36]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[37]  I. N. Sneddon The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile , 1965 .

[38]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[39]  V. Maruvanchery,et al.  Mechanical characterization of thermally treated calcite-cemented sandstone using nanoindentation, scanning electron microscopy and automated mineralogy , 2020, International Journal of Rock Mechanics and Mining Sciences.

[40]  K. Bryson,et al.  The physical properties of meteorites , 2019, Planetary and Space Science.

[41]  Jun Peng,et al.  Modeling Micro-cracking Behavior of Bukit Timah Granite Using Grain-Based Model , 2017, Rock Mechanics and Rock Engineering.

[42]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .