Handbook of Monte Carlo Methods

A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today’s numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: - Random variable and stochastic process generation - Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run - Discrete-event simulation - Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation - Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo - Estimation of derivatives and sensitivity analysis - Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB, a related Web site houses the MATLAB code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels.

[1]  K. F. Roth On irregularities of distribution , 1954 .

[2]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[3]  J. Hammersley MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .

[4]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[5]  R. R. Coveyou,et al.  Fourier Analysis of Uniform Random Number Generators , 1967, JACM.

[6]  G. Marsaglia Random numbers fall mainly in the planes. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .

[8]  P. A. W. Lewis,et al.  A Pseudo-Random Number Generator for the System/360 , 1969, IBM Syst. J..

[9]  Ted G. Lewis,et al.  Generalized Feedback Shift Register Pseudorandom Number Algorithm , 1973, JACM.

[10]  I. D. Hill,et al.  An Efficient and Portable Pseudo‐Random Number Generator , 1982 .

[11]  Brian David Ripley,et al.  The lattice structure of pseudo-random number generators , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  L. R. Moore,et al.  An Exhaustive Analysis of Multiplicative Congruential Random Number Generators with Modulus $2^{31} - 1$ , 1986 .

[13]  Manuel Blum,et al.  A Simple Unpredictable Pseudo-Random Number Generator , 1986, SIAM J. Comput..

[14]  Paul Bratley,et al.  Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.

[15]  L. Afflerbach,et al.  Criteria for the assessment of random number generators , 1990 .

[16]  Pierre L'Ecuyer,et al.  Random numbers for simulation , 1990, CACM.

[17]  P. L’Ecuyer,et al.  Structural properties for two classes of combined random number generators , 1990 .

[18]  Harald Niederreiter,et al.  Recent trends in random number and random vector generation , 1991, Ann. Oper. Res..

[19]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[20]  Makoto Matsumoto,et al.  Twisted GFSR generators , 1992, TOMC.

[21]  K. Fang,et al.  Number-theoretic methods in statistics , 1993 .

[22]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[23]  Pierre L'Ecuyer,et al.  Uniform random number generation , 1994, Ann. Oper. Res..

[24]  S. Tezuka Uniform Random Numbers: Theory and Practice , 1995 .

[25]  Jiirgen Eichenauer-Herrmann,et al.  Pseudorandom Number Generation by Nonlinear Methods , 1995 .

[26]  A. Owen Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .

[27]  Harald Niederreiter,et al.  New Developments in Uniform Pseudorandom Number and Vector Generation , 1995 .

[28]  A. Owen Scrambled net variance for integrals of smooth functions , 1997 .

[29]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[30]  Pierre L'Ecuyer,et al.  An Implementation of the Lattice and Spectral Tests for Multiple Recursive Linear Random Number Generators , 1997, INFORMS J. Comput..

[31]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[32]  J. Gentle Random number generation and Monte Carlo methods , 1998 .

[33]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[34]  Peter Hellekalek,et al.  On the assessment of random and quasi-random point sets , 1998 .

[35]  B. Fox Strategies for Quasi-Monte Carlo , 1999, International Series in Operations Research & Management Science.

[36]  Pierre L'Ecuyer,et al.  Good Parameters and Implementations for Combined Multiple Recursive Random Number Generators , 1999, Oper. Res..

[37]  P. L’Ecuyer,et al.  Variance Reduction via Lattice Rules , 1999 .

[38]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[39]  Fred J. Hickernell,et al.  Extensible Lattice Sequences for Quasi-Monte Carlo Quadrature , 2000, SIAM J. Sci. Comput..

[40]  Jean-François Cordeau,et al.  Close-Point Spatial Tests and Their Application to Random Number Generators , 2000, Oper. Res..

[41]  Pierre L'Ecuyer,et al.  Software for uniform random number generation: distinguishing the good and the bad , 2001, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304).

[42]  Pierre L'Ecuyer,et al.  On the performance of birthday spacings tests with certain families of random number generators , 2001 .

[43]  Peter Jaeckel,et al.  Monte Carlo methods in finance , 2002 .

[44]  Pierre L'Ecuyer,et al.  Sparse Serial Tests of Uniformity for Random Number Generators , 1998, SIAM J. Sci. Comput..

[45]  Pierre L'Ecuyer,et al.  An Object-Oriented Random-Number Package with Many Long Streams and Substreams , 2002, Oper. Res..

[46]  George Marsaglia,et al.  Random Number Generators , 2003 .

[47]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[48]  Fred J. Hickernell,et al.  Algorithm 823: Implementing scrambled digital sequences , 2003, TOMS.

[49]  Frances Y. Kuo,et al.  Remark on algorithm 659: Implementing Sobol's quasirandom sequence generator , 2003, TOMS.

[50]  Pierre L’Ecuyer,et al.  Polynomial Integration Lattices , 2004 .

[51]  Frances Y. Kuo,et al.  Construction algorithms for polynomial lattice rules for multivariate integration , 2005, Math. Comput..

[52]  Christiane Lemieux,et al.  Searching for extensible Korobov rules , 2007, J. Complex..

[53]  Pierre L'Ecuyer,et al.  TestU01: A C library for empirical testing of random number generators , 2006, TOMS.

[54]  Makoto Matsumoto,et al.  SIMD-Oriented Fast Mersenne Twister: a 128-bit Pseudorandom Number Generator , 2008 .

[55]  Pierre L'Ecuyer,et al.  Quasi-Monte Carlo methods with applications in finance , 2008, Finance Stochastics.

[56]  Pierre L'Ecuyer,et al.  F2-Linear Random Number Generators , 2009 .

[57]  C. Lemieux Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .