Experimental system design for the integration of trapped-ion and superconducting qubit systems

[1]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[2]  Simon J. Devitt,et al.  Blueprint for a microwave ion trap quantum computer , 2015 .

[3]  G. Kurizki,et al.  Quantum technologies with hybrid systems , 2015, Proceedings of the National Academy of Sciences.

[4]  L. DiCarlo,et al.  Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates , 2015, 1502.04082.

[5]  S. Webster,et al.  Generation of spin-motion entanglement in a trapped ion using long-wavelength radiation , 2014, 1409.1862.

[6]  Zhihong Wang,et al.  Bending-induced electromechanical coupling and large piezoelectric response in a micromachined diaphragm , 2013, Scientific Reports.

[7]  D. Koelle,et al.  Trapping of ultracold atoms in a 3He/4He dilution refrigerator , 2013, 1309.2548.

[8]  B. Bumble,et al.  ARCONS: A 2024 Pixel Optical through Near-IR Cryogenic Imaging Spectrophotometer , 2013, 1306.4674.

[9]  S. Trolier-McKinstry,et al.  Sputter deposition of PZT piezoelectric films on thin glass substrates for adjustable x-ray optics. , 2013, Applied optics.

[10]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[11]  R. Hanson,et al.  Diamond NV centers for quantum computing and quantum networks , 2013 .

[12]  C. J. Mellor,et al.  Increased surface flashover voltage in microfabricated devices , 2013 .

[13]  D. Loss,et al.  Prospects for Spin-Based Quantum Computing in Quantum Dots , 2012, 1204.5917.

[14]  Jeremy M. Sage,et al.  Loading of a surface-electrode ion trap from a remote, precooled source , 2012, 1205.6379.

[15]  Dan Werthimer,et al.  A readout for large arrays of microwave kinetic inductance detectors. , 2012, The Review of scientific instruments.

[16]  M. Okhapkin,et al.  Laser ablation loading of a radiofrequency ion trap , 2011, 1112.1664.

[17]  G. Milburn,et al.  Quantum interface between an electrical circuit and a single atom. , 2011, Physical review letters.

[18]  W. Marsden I and J , 2012 .

[19]  A. H. Nizamani Yb+ ion trapping and optimum planar trap geometries for scalable quantum technology , 2011 .

[20]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2011, Nature.

[21]  M. Calvo,et al.  Development of Lumped Element Kinetic Inductance Detectors for NIKA , 2011, 1212.4585.

[22]  K. R. Brown,et al.  Microwave quantum logic gates for trapped ions , 2011, Nature.

[23]  Winfried K. Hensinger,et al.  Microfabricated ion traps , 2011, 1101.3207.

[24]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[25]  Karl Berggren,et al.  Superconducting microfabricated ion traps , 2010, 1010.6108.

[26]  K. Bongs,et al.  Efficient guiding of cold atoms through a photonic band gap fiber , 2010, 1010.0101.

[27]  Winfried K. Hensinger,et al.  Optimum electrode configurations for fast ion separation in microfabricated surface ion traps , 2010, 1007.3542.

[28]  A. Benoit,et al.  Characterization of lumped element kinetic inductance detectors for mm-wave detection , 2010, Astronomical Telescopes + Instrumentation.

[29]  K. Shepard,et al.  FBAR-CMOS Oscillator Array for Mass-Sensing Applications , 2010, IEEE Sensors Journal.

[30]  Thomas G. Walker,et al.  Quantum information with Rydberg atoms , 2009, 0909.4777.

[31]  James S. Langer,et al.  Annual review of condensed matter physics , 2010 .

[32]  P. Zoller,et al.  Hybrid quantum devices and quantum engineering , 2009, 0911.3835.

[33]  Wolfgang Lange,et al.  Quantum Computing with Trapped Ions , 2009, Encyclopedia of Complexity and Systems Science.

[34]  J. Schmiedmayer,et al.  Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity. , 2008, Physical review letters.

[35]  D Schuster,et al.  Cryogenic ion trapping systems with surface-electrode traps. , 2008, The Review of scientific instruments.

[36]  J. Carpentier,et al.  Thermally stable oscillator at 2.5 GHz using temperature compensated BAW resonator and its integrated temperature sensor , 2008, 2008 IEEE Ultrasonics Symposium.

[37]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[38]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[39]  S. Girvin,et al.  Wiring up quantum systems , 2008, Nature.

[40]  David Leibrandt,et al.  Suppression of heating rates in cryogenic surface-electrode ion traps. , 2007, Physical review letters.

[41]  M. Fouaidy,et al.  Characterization at Cryogenic Temperatures of Piezostacks Dedicated to Fast Tuners for SRF Cavities , 2007, 2007 14th International Conference on Mixed Design of Integrated Circuits and Systems.

[42]  J. Ekin Experimental Techniques for Low-Temperature Measurements: Cryostat Design, Material Properties, and Superconductor Critical-Current Testing , 2007 .

[43]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[44]  Stafford Withington,et al.  Superconducting kinetic inductance detectors for astrophysics , 2007 .

[45]  Fedor Jelezko,et al.  Single defect centres in diamond: A review , 2006 .

[46]  C. Monroe,et al.  Scaling and suppression of anomalous heating in ion traps. , 2006, Physical review letters.

[47]  R. B. Blakestad,et al.  Microfabricated surface-electrode ion trap for scalable quantum information processing. , 2006, Physical review letters.

[48]  Chi-Yuan Lee,et al.  Microfabrication Process of PZT Thick Film by Aerosol Deposition Method , 2006, 2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems.

[49]  R. Aigner MEMS in RF-filter applications: thin film bulk-acoustic-wave technology , 2005, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05..

[50]  G. Martinet,et al.  Full Characterization at Low Temperature of Piezoelectric Actuators Used for SRF Cavities Active Tuning , 2005, Proceedings of the 2005 Particle Accelerator Conference.

[51]  D. Leibfried,et al.  Surface-electrode architecture for ion-trap quantum information processing , 2005, Quantum Inf. Comput..

[52]  H. Seppa,et al.  Nonlinear limits for single-crystal silicon microresonators , 2004, Journal of Microelectromechanical Systems.

[53]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[54]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[55]  M. Lukin,et al.  Capacitive coupling of atomic systems to mesoscopic conductors. , 2003, Physical review letters.

[56]  PIEZOELECTRIC FILMS IN SILICON-BASED MICROACTUATION STRUCTURES , 2004 .

[57]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[58]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[59]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[60]  M. Jacob,et al.  About Les Houches , 2002 .

[61]  Dragan Damjanovic,et al.  Processing and Properties of Screen-Printed Lead Zirconate Titanate Piezoelectric Thick Films on Electroded Silicon , 2001 .

[62]  Knight,et al.  Single-Mode Photonic Band Gap Guidance of Light in Air. , 1999, Science.

[63]  T. Morita,et al.  A cylindrical micro ultrasonic motor using PZT thin film deposited by single process hydrothermal method (/spl phi/2.4 mm, L=10 mm stator transducer) , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[64]  Experimental quasiparticle dynamics in a superconducting, imaging x-ray spectrometer , 1997 .

[65]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[66]  M. Devoret Quantum Fluctuations in Electrical Circuits , 1997 .

[67]  Ito,et al.  Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers. , 1996, Physical review letters.

[68]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[69]  Cornell,et al.  Laser-guided atoms in hollow-core optical fibers. , 1995, Physical review letters.

[70]  V. Letokhov,et al.  Laser guiding of atoms in a hollow optical fiber , 1993 .

[71]  Physical Review Letters 63 , 1989 .

[72]  K. Budd,et al.  SOL-GEL PROCESSING OF PbTiO//3, PbZrO//3, PZT, AND PLZT THIN FILMS. , 1985 .

[73]  E. Commins,et al.  Large Aperture, High Efficiency Ion Detector , 1966 .

[74]  D. Mattis,et al.  Theory of the anomalous skin effect in normal and superconducting metals , 1958 .

[75]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[76]  H. Nyquist Thermal Agitation of Electric Charge in Conductors , 1928 .

[77]  J. Johnson Thermal Agitation of Electricity in Conductors , 1927, Nature.

[78]  K. Hashimoto,et al.  PZT Thin Films for SAW and BAW Devices , 2022 .