The nature and power of fixed-point logic with counting

In 1982, Neil Immerman proposed an extension of fixed-point logic by means of counting quantifiers (which we denote FPC) as a logic that might express all polynomial-time properties of unordered graphs. It was eventually proved (by Cai, Fürer and Immerman) that there are polynomial-time graph properties that are not expressible in FPC. Nonetheless, FPC is a powerful and natural fragment of the complexity class PTime. In this article, I justify this claim by reviewing three recent positive results that demonstrate the expressive power and robustness of this logic.

[1]  K. Wagner Über eine Eigenschaft der ebenen Komplexe , 1937 .

[2]  Anuj Dawar,et al.  A Restricted Second Order Logic for Finite Structures , 1994, LCC.

[3]  Lauri Hella Logical Hierarchies in PTIME , 1996, Inf. Comput..

[4]  Martin Otto,et al.  Bounded Variable Logics and Counting: A Study in Finite Models , 1997, Lecture Notes in Logic.

[5]  Anuj Dawar,et al.  Affine Systems of Equations and Counting Infinitary Logic , 2007, ICALP.

[6]  Neil Immerman,et al.  Relational queries computable in polynomial time (Extended Abstract) , 1982, STOC '82.

[7]  Thomas Rothvoß,et al.  The matching polytope has exponential extension complexity , 2013, STOC.

[8]  Martin Grohe,et al.  Fixed-Point Definability and Polynomial Time on Graphs with Excluded Minors , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[9]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[10]  阿部 浩一,et al.  Fundamenta Mathematicae私抄 : 退任の辞に代えて , 1987 .

[11]  Neil Immerman,et al.  Descriptive Complexity , 1999, Graduate Texts in Computer Science.

[12]  Michael J. Todd,et al.  Polynomial Algorithms for Linear Programming , 1988 .

[13]  Paul D. Seymour,et al.  Graph Minors. XVI. Excluding a non-planar graph , 2003, J. Comb. Theory, Ser. B.

[14]  Anuj Dawar,et al.  Properties of Almost All Graphs and Generalized Quantifiers , 2010, Fundam. Informaticae.

[15]  Anuj Dawar,et al.  Maximum Matching and Linear Programming in Fixed-Point Logic with Counting , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[16]  Anuj Dawar,et al.  On Symmetric Circuits and Fixed-Point Logics , 2014, Theory of Computing Systems.

[17]  Saharon Shelah,et al.  Definability by Constant-Depth Polynomial-Size Circuits , 1986, Inf. Control..

[18]  Martin Otto The Logic of Explicitly Presentation-Invariant Circuits , 1996, CSL.

[19]  Martin Grohe,et al.  Fixed-point logics on planar graphs , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[20]  Françoise Gire,et al.  An Extension of Fixpoint Logic with a Symmetry-Based Choice Construct , 1998, Inf. Comput..

[21]  Neil Immerman,et al.  An optimal lower bound on the number of variables for graph identification , 1989, 30th Annual Symposium on Foundations of Computer Science.

[22]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[23]  C. Kuratowski Sur le problème des courbes gauches en Topologie , 1930 .

[24]  Eugene M. Luks,et al.  Isomorphism of graphs of bounded valence can be tested in polynomial time , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[25]  Anuj Dawar,et al.  Logics with Rank Operators , 2009, 2009 24th Annual IEEE Symposium on Logic In Computer Science.

[26]  E. Lander,et al.  Describing Graphs: A First-Order Approach to Graph Canonization , 1990 .

[27]  Paul D. Seymour,et al.  Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.

[28]  Saharon Shelah,et al.  Choiceless Polynomial Time , 1997, Ann. Pure Appl. Log..

[29]  Elias Dahlhaus,et al.  Reduction to NP-complete problems by interpretations , 1983, Logic and Machines.

[30]  Y. Gurevich On Finite Model Theory , 1990 .

[31]  Martin Grohe,et al.  Descriptive Complexity, Canonisation, and Definable Graph Structure Theory , 2017, Lecture Notes in Logic.

[32]  Kristian Kersting,et al.  Dimension Reduction via Colour Refinement , 2013, ESA.

[33]  Anuj Dawar,et al.  On the Descriptive Complexity of Linear Algebra , 2008, WoLLIC.

[34]  Neil Immerman,et al.  Relational Queries Computable in Polynomial Time , 1986, Inf. Control..

[35]  Martin Grohe,et al.  Definability and Descriptive Complexity on Databases of Bounded Tree-Width , 1999, ICDT.

[36]  Anuj Dawar,et al.  Finite Model Theory on Tame Classes of Structures , 2007, MFCS.

[37]  László Lovász,et al.  Some Remarks on Generalized Spectra , 1977, Math. Log. Q..

[38]  Moshe Y. Vardi The complexity of relational query languages (Extended Abstract) , 1982, STOC '82.

[39]  B. Mohar,et al.  Graph Minors , 2009 .