Convective boiling of pure and mixed refrigerants: An experimental study of the major parameters affecting heat transfer

Abstract An experimental study is carried out to investigate the characteristics of the evaporation heat transfer for different fluids. Namely, pure refrigerants fluids (R22 and R134a), azeotropic and quasi-azeotropic mixtures (R404A, R410A, R507) and zeotropic mixtures (R407C and R417A). The test section is a smooth, horizontal, stainless steel tube (6 mm ID, 6 m length) uniformly heated by the Joule effect. The flow boiling characteristics of the refrigerant fluids are evaluated in 250 different operating conditions. Thus, a data-base of more than 2000 data points is produced. The experimental tests are carried out varying: (i) the refrigerant mass fluxes within the range 200–1100 kg/m2 s; (ii) the heat fluxes within the range 3.50–47.0 kW/m2; (iii) the evaporating pressures within the range 3.00–12.0 bar. In this study, the effect on measured heat transfer coefficient of vapour quality, mass flux, saturation temperature, imposed heat flux, thermo-physical properties are examined in detail.

[1]  A. Greco,et al.  Flow boiling heat transfer with HFC mixtures in a smooth horizontal tube. Part I: Experimental investigations , 2005 .

[2]  E. Hihara,et al.  Boiling heat transfer of a ternary refrigerant mixture inside a horizontal smooth tube , 1997 .

[3]  J. Thome,et al.  Investigation of Flow Boiling in Horizontal Tubes: Part II, Development of a New Heat Transfer Model for Stratified-Wavy, Dryout and Mist Flow Regimes , 2005 .

[4]  I. Wark The Physical Chemistry of Flotation. I. The Significance of Contact Angle in Flotation. , 1932 .

[5]  Shizuo Saitoh,et al.  Effect of tube diameter on boiling heat transfer of R-134a in horizontal small-diameter tubes , 2005 .

[6]  S. Kandlikar A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes , 1990 .

[7]  J. Thome Boiling of new refrigerants: a state-of-the-art review , 1996 .

[8]  Tsing-Fa Lin,et al.  Saturated flow boiling heat transfer of refrigerant R-410A in a horizontal annular finned duct , 2007 .

[9]  K. Hambraeus Heat transfer coefficient during two-phase flow boiling of HFC-134a , 1991 .

[10]  A. Greco,et al.  Evaporation of refrigerants in a smooth horizontal tube: prediction of R22 and R507 heat transfer coefficients and pressure drop , 2004 .

[11]  W. Rohsenow A Method of Correlating Heat-Transfer Data for Surface Boiling of Liquids , 1952, Journal of Fluids Engineering.

[12]  Huang-Hsiu Tsai,et al.  Evaporative characteristics of R-134a and R-600a in horizontal tubes with perforated strip-type inserts , 2003 .

[13]  P. Haberschill,et al.  Coefficients d'échange locaux au cours de l'ébullition du R22 et du R407C dans des tubes horizontaux, lisse ou micro-aileté , 2001 .

[14]  M. Cooper SATURATION NUCLEATE POOL BOILING - A SIMPLE CORRELATION , 1984 .

[15]  S. Wongwises,et al.  Performance of smooth and micro-fin tubes in high mass flux region of R-134a during evaporation , 2004 .

[16]  Tsing-Fa Lin,et al.  Experimental study of evaporation pressure drop characteristics of refrigerants R-134a and R-407C in horizontal small tubes , 2006 .

[17]  J. Taborek,et al.  Flow Boiling Heat Transfer in Vertical Tubes Correlated by an Asymptotic Model , 1992 .

[18]  R. A. Johns,et al.  Two-phase heat transfer coefficients of three HFC refrigerants inside a horizontal smooth tube, part I: evaporation , 2000 .

[19]  A. Bontemps,et al.  Vertical flow boiling of refrigerant R134a in small channels , 2005 .

[20]  R. Webb,et al.  Nucleate pool boiling data for five refrigerants on plain, integral-fin and enhanced tube geometries , 1992 .

[21]  Min-Soo Kim,et al.  Experimental study on forced convective boiling heat transfer of pure refrigerants and refrigerant mixtures in a horizontal tube , 1997 .

[22]  M. Ohadi,et al.  Review of available correlations for prediction of flow boiling heat transfer in smooth and augmented tubes , 1995 .

[23]  Chunlei Zhang,et al.  Generalized neural network correlation for flow boiling heat transfer of R22 and its alternative refrigerants inside horizontal smooth tubes , 2006 .

[24]  K. Gungor,et al.  A general correlation for flow boiling in tubes and annuli , 1986 .

[25]  J. Thome,et al.  Flow Boiling in Horizontal Tubes: Part 2—New Heat Transfer Data for Five Refrigerants , 1998 .

[26]  G. M. Lazarek,et al.  Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113 , 1982 .

[27]  M. Lallemand,et al.  Convective boiling of R-407c inside horizontal microfin and plain tubes , 2003 .

[28]  M. Goto,et al.  Condensation and evaporation heat transfer of R410A inside internally grooved horizontal tubes , 2001 .

[29]  J. Thome,et al.  Investigation of Flow Boiling in Horizontal Tubes: Part I, A New Diabatic Two-Phase Flow Pattern Map , 2005 .

[30]  Robert J. Moffat,et al.  Describing the Uncertainties in Experimental Results , 1988 .

[31]  J. Chung,et al.  Evaporation heat transfer characteristics of R-410A in 7 and 9.52 mm smooth/micro-fin tubes , 2002 .

[32]  Somchai Wongwises,et al.  Two-phase evaporative heat transfer coefficients of refrigerant HFC-134a under forced flow conditions in a small horizontal tube , 2000 .

[33]  R. Webb,et al.  Correlation of convective vaporization on banks of plain tubes using refrigerants , 1994 .

[34]  Ian William Wark The Physical Chemistry of Flotation , 1932 .

[35]  Ming-huei Yu,et al.  Heat transfer and flow pattern during two-phase flow boiling of R-134a in horizontal smooth and microfin tubes , 2002 .

[36]  R. Webb,et al.  A Critical Review of Correlations for Convective Vaporization in Tubes and Tube Banks , 1992 .

[37]  V. V. Klimenko,et al.  A generalized correlation for two-phase forced flow heat transfer , 1988 .

[38]  Samuel M. Sami,et al.  Boiling characteristics of ternary mixtures inside enhanced surface tubing , 2000 .