On the Mechanism of Fluid Transport Across the Grinding Zone

By considering both hydrodynamic pressure and ram pressure effects on flow through a porous wheel, we construct here a predictive model for calculating the flow-rate of the cooling fluid through the grinding zone. The hydrodynamic pressure is computed by means ofa modified Reynolds equation, with upstream boundary conditions supplied by the ram pressure. To find the tangential velocity, the radial velocity, the depth of penetration of the fluid into the wheel, and the flow rate through the grinding zone, we solve momentum and continuity equations for flow through porous media. An empirical correlation for permeability, containing two dimensionless parameters, is employed to provide correction for wheel surface roughness, yielding theoretical results that show good agreement with experimental data for both conventional and creep feed grinding.