On Conciseness of Extensions of Timed Automata

In this paper we study conciseness of various extensions of timed automata, and prove that several features like diagonal constraints or updates lead to exponentially more concise timed models.

[1]  Wang Yi,et al.  Uppaal in a nutshell , 1997, International Journal on Software Tools for Technology Transfer.

[2]  Christian Choffrut,et al.  Timed Automata with Periodic Clock Constraints , 2000, J. Autom. Lang. Comb..

[3]  Kim G. Larsen,et al.  The Impressive Power of Stopwatches , 2000, CONCUR.

[4]  Catherine Dufourd,et al.  Timed automata and additive clock constraints , 2000, Information Processing Letters.

[5]  Nicolas Markey Past is for free: on the complexity of verifying linear temporal properties with past , 2003, Acta Informatica.

[6]  Andrea Maggiolo-Schettini,et al.  Concurrency in timed automata , 2003, Theor. Comput. Sci..

[7]  Patricia Bouyer,et al.  Updatable timed automata , 2004, Theor. Comput. Sci..

[8]  Stavros Tripakis,et al.  The Tool KRONOS , 1996, Hybrid Systems.

[9]  Rajeev Alur,et al.  Model-Checking in Dense Real-time , 1993, Inf. Comput..

[10]  Paul Gastin,et al.  Characterization of the Expressive Power of Silent Transitions in Timed Automata , 1998, Fundam. Informaticae.

[11]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[12]  Nicolas Markey,et al.  Temporal logic with past is exponentially more succinct, Concurrency Column , 2003, Bull. EATCS.

[13]  Wieslaw Zielonka,et al.  Controlled Timed Automata , 1998, CONCUR.

[14]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[15]  Wang Yi,et al.  Timed Automata with Asynchronous Processes: Schedulability and Decidability , 2002, TACAS.