A quantum secure direct communication protocol using entangled modified spin coherent states

In this paper, a new direct quantum communication protocol based on a modified spin coherent state as decoy particles is to be depicted, before that both the scheme of the communication and the modified spin coherent state of the $$SU(2)$$ group will be presented. The final phase is to be devoted to the study of the transmission security analysis and the quantity information depending on the method of the entropy theory, using the constraint between the information which can be obtained by the eavesdropper and the occurring interference.

[1]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[2]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[3]  B. Jurčo On coherent states for the simplest quantum groups , 1991 .

[4]  Gilles Brassard,et al.  Secret-Key Reconciliation by Public Discussion , 1994, EUROCRYPT.

[5]  Classicality of spin-coherent states via entanglement and distinguishability , 2002, quant-ph/0208179.

[6]  Morad El Baz,et al.  Quantum key distribution via tripartite coherent states , 2011, Quantum Inf. Process..

[7]  Gao Ting,et al.  A Simultaneous Quantum Secure Direct Communication Scheme between the Central Party and Other M Parties , 2005 .

[8]  Qiaoyan Wen,et al.  Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol , 2007, 0801.2418.

[9]  Gilles Brassard,et al.  Experimental Quantum Cryptography , 1990, EUROCRYPT.

[10]  Wang Yan,et al.  Secure Quantum Key Distribution Network with Bell States and Local Unitary Operations , 2005 .

[11]  Marek Zukowski,et al.  Experimental quantum teleportation of arbitrary quantum states , 1998 .

[12]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[13]  P. L. Knight,et al.  Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement , 2002 .

[14]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[15]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[16]  R. Glauber The Quantum Theory of Optical Coherence , 1963 .

[17]  R. Jozsa,et al.  Quantum Computation and Shor's Factoring Algorithm , 1996 .

[18]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[19]  Fibirova Jana,et al.  Profit-Sharing – A Tool for Improving Productivity, Profitability and Competitiveness of Firms? , 2013 .

[20]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[21]  A. Perelomov Coherent states for arbitrary Lie group , 1972 .

[22]  Weinfurter,et al.  Dense coding in experimental quantum communication. , 1996, Physical review letters.

[23]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[24]  Harald Weinfurter,et al.  Secure Communication with a Publicly Known Key , 2001 .

[25]  Qiao-Yan Wen,et al.  Comparing the efficiencies of different detect strategies in the ping-pong protocol , 2008 .

[26]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[27]  Solomon,et al.  Nonideal lasers, nonclassical light, and deformed photon states. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[28]  Y. Hassouni,et al.  Communication via an entangled coherent quantum network , 2010, 1011.3915.

[29]  Leon A. Takhtajan,et al.  Quantization of Lie Groups and Lie Algebras , 1987 .

[30]  J. Klauder The action option and a Feynman quantization of spinor fields in terms of ordinary c-numbers , 1960 .

[31]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[32]  N. Gisin,et al.  Trojan-horse attacks on quantum-key-distribution systems (6 pages) , 2005, quant-ph/0507063.

[33]  C. Gerry,et al.  Path Integrals and Coherent States of Su(2) and Su(1, 1) , 1992 .

[34]  Sergei P. Kulik,et al.  Quantum teleportation with a complete Bell state measurement , 2000, Physical review letters.

[35]  C. Gerry,et al.  Beam splitting and entanglement: Generalized coherent states, group contraction, and the classical limit , 2005 .

[36]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[37]  Wang Chuan,et al.  Quantum secure direct communication and deterministic secure quantum communication , 2007 .

[38]  A. Perelomov Generalized Coherent States and Their Applications , 1986 .

[39]  N. Metwally,et al.  Transfer information remotely via noise entangled coherent channels , 2010, 1002.2333.

[40]  Michio Jimbo QuantumR matrix for the generalized Toda system , 1986 .

[41]  E. Schrödinger Der stetige Übergang von der Mikro- zur Makromechanik , 1926, Naturwissenschaften.

[42]  J. Klauder,et al.  COHERENT STATES: APPLICATIONS IN PHYSICS AND MATHEMATICAL PHYSICS , 1985 .