Sandia National Laboratories (SNL) is investigating thermochemical approaches for reenergizing CO2 and H2 O feed stocks for input to synthetic liquid hydrocarbon fuels production. Key to the approach is the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5), a novel solar-driven thermochemical heat engine concept for high-temperature carbon dioxide and water splitting based on two-step, nonvolatile metal oxide thermochemical cycles. The CR5 integrates two reactors, recuperators, and solar receiver and intrinsically separates the product gases. The CR5 thermochemical heat engine concept and the underlying thermodynamics and kinetics have many uncertainties. While results from laboratory scale material tests are promising, they are different than what occurs in a CR5. To evaluate the potential of the CR5 we have designed and built a CR5 prototype. The overall objective of the SNL Sunshine to Petrol (S2P) project is to show a solar thermochemical pathway for the efficient production of liquid fuels from CO2 and H2 O feed stocks. To achieve the overall long-term goal of 10% efficient conversion of sunlight to petroleum, the thermochemical solar conversion of sunlight to CO needs to be 20% efficient. The short-term goal for the CR5 prototype is to demonstrate a solar to chemical conversion efficiency of at least 2%. In this paper, we present initial test results for the CR5 prototype in the 16 kWt National Solar Thermal Test Facility (NSTTF) solar furnace in Albuquerque, NM. Lessons learned from the initial tests and approaches for improving performance to achieve our goals are also presented.Copyright © 2010 by ASME