Bifix codes and Sturmian words

We prove new results concerning the relation between bifix codes, episturmian words and subgroups offree groups. We study bifix codes in factorial sets of words. We generalize most properties of ordinary maximal bifix codes to bifix codes maximal in a recurrent set $F$ of words ($F$-maximal bifix codes). In the case of bifix codes contained in Sturmian sets of words, we obtain several new results. Let $F$ be a Sturmian set of words, defined as the set of factors of a strict episturmian word. Our results express the fact that an $F$-maximal bifix code of degree $d$ behaves just as the set of words of $F$ of length $d$. An $F$-maximal bifix code of degree $d$ in a Sturmian set of words on an alphabet with $k$ letters has $(k-1)d+1$ elements. This generalizes the fact that a Sturmian set contains $(k-1)d+1$ words of length $d$. Moreover, given an infinite word $x$, if there is a finite maximal bifix code $X$ of degree $d$ such that $x$ has at most $d$ factors of length $d$ in $X$, then $x$ is ultimately periodic. Our main result states that any $F$-maximal bifix code of degree $d$ on the alphabet $A$ is the basis of a subgroup of index $d$ of the free group on~$A$.

[1]  Christophe Reutenauer,et al.  Ensembles libres de chemins dans un graphe , 1986 .

[2]  Laurent Vuillon,et al.  A Characterization of Sturmian Words by Return Words , 2001, Eur. J. Comb..

[3]  Luca Q. Zamboni,et al.  Descendants of Primitive Substitutions , 1999, Theory of Computing Systems.

[4]  D. Champernowne The Construction of Decimals Normal in the Scale of Ten , 1933 .

[5]  Giuseppe Pirillo,et al.  Episturmian words and some constructions of de Luca and Rauzy , 2001, Theor. Comput. Sci..

[6]  Zhi-Xiong Wen,et al.  LOCAL ISOMORPHISMS OF INVERTIBLE SUBSTITUTIONS , 1994 .

[7]  M. Hall Subgroups of Finite Index in Free Groups , 1949, Canadian Journal of Mathematics.

[8]  Heiner Zieschang,et al.  Primitives in the free group on two generators , 1981 .

[9]  Yves Césari Sur un algorithme donnant les codes bipréfixes finis , 2005, Mathematical systems theory.

[10]  Marcel Paul Schützenberger,et al.  ON an APPIICATICN , 1998 .

[11]  Giuseppina Rindone Construction of a family of codes associated with certain finite groups , 1987 .

[12]  Jacques Justin,et al.  Episturmian words: a survey , 2008, RAIRO Theor. Informatics Appl..

[13]  Fabien Durand,et al.  A characterization of substitutive sequences using return words , 1998, Discret. Math..

[14]  Christophe Reutenauer,et al.  Une Topologie du Monoïde Libre , 1979 .

[15]  Gérard Rauzy,et al.  Représentation géométrique de suites de complexité $2n+1$ , 1991 .

[16]  A. Markoff,et al.  Sur les formes quadratiques binaires indéfinies , 1880 .

[17]  Sujin Shin,et al.  Cyclic renewal systems , 2009, Theor. Comput. Sci..

[18]  M. Lothaire Combinatorics on words, Second Edition , 1997 .

[19]  Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften , 2005, Naturwissenschaften.

[20]  Dominique Perrin,et al.  Codes and sofic constraints , 2005, Theor. Comput. Sci..

[21]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[22]  R. Lyndon,et al.  Combinatorial Group Theory , 1977 .

[23]  M. Schutzenberger,et al.  On an application of semi groups methods to some problems in coding , 1956 .

[24]  Véronique Bruyère,et al.  Words derivated from Sturmian words , 2005, Theor. Comput. Sci..

[25]  Rational subsets of groups , 2010, ArXiv.

[26]  Antonio Restivo Codes and Local Constraints , 1990, Theor. Comput. Sci..

[27]  Gwénaël Richomme,et al.  On factorially balanced sets of words , 2011, Theor. Comput. Sci..

[28]  E. B. Christoffel Observatio Arithmetica , 1873 .

[29]  Clelia de Felice Finite Biprefix Sets of Paths in a Graph , 1988, Theor. Comput. Sci..

[30]  Ilya Kapovich,et al.  Stallings Foldings and Subgroups of Free Groups , 2002 .

[31]  Robert Cori Indecomposable permutations, hypermaps and labeled Dyck paths , 2009, J. Comb. Theory, Ser. A.

[32]  J. Allouche Algebraic Combinatorics on Words , 2005 .

[33]  T. Cusick,et al.  The Markoff and Lagrange Spectra , 1989 .

[34]  Harvey Cohn,et al.  Markoff forms and primitive words , 1972 .

[35]  Enrico Bombieri,et al.  Continued fractions and the Markoff tree , 2007 .

[36]  A. Markoff,et al.  Sur les formes quadratiques ternaires indéfinies , 1879 .

[37]  Laurent Vuillon,et al.  Return words in Sturmian and episturmian words , 2000, RAIRO Theor. Informatics Appl..

[38]  Aldo de Luca,et al.  Codes of central Sturmian words , 2005, Theor. Comput. Sci..

[39]  M. Lothaire,et al.  Combinatorics on words: Frontmatter , 1997 .

[40]  Leonard Eugene Dickson,et al.  Studies in the theory of numbers , 1931 .

[41]  E. F. Moore,et al.  Variable-length binary encodings , 1959 .

[42]  Ethan M. Coven,et al.  Sequences with minimal block growth , 2005, Mathematical systems theory.

[43]  A. Markoff,et al.  Sur les formes quadratiques binaires indéfinies , 1879 .

[44]  Maxime Crochemore,et al.  Two-way string-matching , 1991, JACM.

[45]  Aldo de Luca,et al.  Sturmian Words: Structure, Combinatorics, and Their Arithmetics , 1997, Theor. Comput. Sci..

[46]  Giuseppe Pirillo,et al.  Episturmian words and episturmian morphisms , 2002, Theor. Comput. Sci..

[47]  Filippo Mignosi,et al.  Morphismes sturmiens et règles de Rauzy , 1993 .

[48]  Giuseppina Rindone Construction d'une Famille de Codes Associes a Certains Groupes Finis , 1987, Theor. Comput. Sci..

[49]  Giuseppe Pirillo,et al.  Episturmian Words: Shifts, Morphisms And Numeration Systems , 2004, Int. J. Found. Comput. Sci..

[50]  Christophe Reutenauer,et al.  Sturmian morphisms, the braid group B4, Christoffel words and bases of F2 , 2007 .

[51]  Patrice Ossona de Mendez,et al.  Transitivity And Connectivity Of Permutations , 2004, Comb..

[52]  Dominique Perrin,et al.  Completing codes in a sofic shift , 2009, Theor. Comput. Sci..

[53]  Ethan M. Coven,et al.  Sequences with minimal block growth II , 1973, Mathematical systems theory.

[54]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[55]  Dominique Perrin,et al.  Codes and Automata , 2009, Encyclopedia of mathematics and its applications.

[56]  Dominique Perrin,et al.  On syntactic groups , 2003 .

[57]  Dominique Perrin,et al.  Recent results on syntactic groups of prefix codes , 2012, Eur. J. Comb..

[58]  M. Schützenberger On a special class of recurrent events , 1961 .

[59]  Leonard Eugene Dickson,et al.  Studies in the Theory of Numbers , 1931 .