Gröbner bases for operads

We define a new monoidal category on collections (shuffle composition). Monoids in this category (shuffle operads) turn out to bring a new insight in the theory of symmetric operads. For this category, we develop the machinery of Gr\"obner bases for operads, and present operadic versions of Bergman's Diamond Lemma and Buchberger's algorithm. This machinery can be applied to study symmetric operads. In particular, we obtain an effective algorithmic version of Hoffbeck's PBW criterion of Koszulness for (symmetric) quadratic operads.

[1]  S. Merkulov Strong homotopy algebras of a Kähler manifold , 1998 .

[2]  S. Shadrin,et al.  Tautological relations in Hodge field theory , 2007, 0704.1001.

[3]  H. Strohmayer Operads of compatible structures and weighted partitions , 2007, 0706.2196.

[4]  Bruno Vallette,et al.  Free Monoid in Monoidal Abelian Categories , 2004, Applied Categorical Structures.

[5]  Frédéric Chapoton,et al.  Dialgebras and Related Operads , 2001 .

[6]  V. A. Ufnarovskij Combinatorial and Asymptotic Methods in Algebra , 1995 .

[7]  G. Bergman The diamond lemma for ring theory , 1978 .

[8]  P. V. D. Laan Coloured Koszul duality and strongly homotopy operads , 2003, math/0312147.

[9]  Roberto Tauraso,et al.  The operad Lie is free , 2008 .

[10]  Joseph Chuang,et al.  Feynman diagrams and minimal models for operadic algebras , 2008, 0802.3507.

[11]  Eric Hoffbeck,et al.  A Poincaré–Birkhoff–Witt criterion for Koszul operads , 2007, 0709.2286.

[12]  M. Kapranov,et al.  Koszul duality for Operads , 1994, 0709.1228.

[13]  Rewriting in Operads and PROPs , 2006 .

[14]  F. Chapoton Algèbres pré-Lie et algèbres de Hopf liées à la renormalisation , 2001 .

[15]  M. Markl,et al.  (Non-)Koszulness of operads for $$n$$n-ary algebras, galgalim and other curiosities , 2009, 0907.1505.

[16]  Character formulas for the operad of two compatible brackets and for the bi-Hamiltonian operad , 2006, math/0605233.

[17]  Vladimir Dotsenko,et al.  Implementing Gr\"obner bases for operads , 2009 .

[18]  Lothar Gerritzen,et al.  Tree polynomials and non-associative Gröbner bases , 2006, J. Symb. Comput..

[19]  C. Stover The equivalence of certain categories of twisted Lie and Hopf algebras over a commutative ring , 1993 .

[20]  S. Merkulov EXOTIC AUTOMORPHISMS OF THE SCHOUTEN ALGEBRA OF POLYVECTOR FIELDS , 2008, 0809.2385.

[21]  V. Dotsenko An operadic approach to deformation quantizationof compatible Poisson brackets, I , 2006, math/0611154.

[22]  Wee Liang Gan Koszul duality for dioperads , 2002, math/0201074.

[23]  P. Hanlon,et al.  On lie k-algebras , 1995 .

[24]  L. A. Bokut,et al.  Embeddings into simple associative algebras , 1976 .

[25]  Frederic Chapoton On a Hopf operad containing the Poisson operad , 2003 .

[26]  Martin Markl,et al.  Operads in algebra, topology, and physics , 2002 .

[27]  J.-L. Loday Une version non commutative des algèbres de Lie : les algèbres de Leibniz , 1993 .

[28]  M. Markl Distributive laws and Koszulness , 1996 .

[29]  Sergey A. Cherkis,et al.  Multiple M2-branes and generalized 3-Lie algebras , 2008, 0807.0808.

[30]  A. I. Shirshov Some Algorithmic Problems for ε-algebras , 2009 .

[31]  Frederic Chapoton,et al.  Pre-Lie algebras and the rooted trees operad , 2000 .

[32]  PROPped-Up Graph Cohomology , 2003, math/0307081.