Two limiting regimes of interacting Bessel processes

We consider the interacting Bessel processes, a family of multiple-particle systems in one dimension where particles evolve as individual Bessel processes and repel each other via a log-potential. We consider two limiting regimes for this family on its two main parameters: the inverse temperature beta and the Bessel index nu. We obtain the time-scaled steady-state distributions of the processes for the cases where beta or nu are large but finite. In particular, for large beta we show that the steady-state distribution of the system corresponds to the eigenvalue distribution of the beta-Laguerre ensembles of random matrices. We also estimate the relaxation time to the steady state in both cases. We find that in the freezing regime beta->infinity, the scaled final positions of the particles are locked at the square root of the zeroes of the Laguerre polynomial of parameter nu-1/2 for any initial configuration, while in the regime nu->infinity, we prove that the scaled final positions of the particles converge to a single point. In order to obtain our results, we use the theory of Dunkl operators, in particular the intertwining operator of type B. We derive a previously unknown expression for this operator and study its behaviour in both limiting regimes. By using these limiting forms of the intertwining operator, we derive the steady-state distributions, the estimations of the relaxation times and the limiting behaviour of the processes.

[1]  M. Fekete Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten , 1918 .

[2]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[3]  Haldane,et al.  Exact Jastrow-Gutzwiller resonating-valence-bond ground state of the spin-(1/2 antiferromagnetic Heisenberg chain with 1/r2 exchange. , 1988, Physical review letters.

[4]  Shastry,et al.  Exact solution of an S=1/2 Heisenberg antiferromagnetic chain with long-ranged interactions. , 1988, Physical review letters.

[5]  P. Couturier Japan , 1988, The Lancet.

[6]  Harmonic polynomials and peak sets of reflection groups , 1989 .

[7]  Charles F. Dunkl,et al.  Differential-difference operators associated to reflection groups , 1989 .

[8]  Charles F. Dunkl,et al.  Integral Kernels with Reflection Group Invariance , 1991, Canadian Journal of Mathematics.

[9]  Lattice integrable systems of Haldane-Shastry type. , 1992, Physical review letters.

[10]  H. Frahm Spectrum of a spin chain with inverse square exchange , 1993, cond-mat/9303050.

[11]  Integrable spin chain with reflecting end , 1996, cond-mat/9602105.

[12]  M. Rösler POSITIVITY OF DUNKL'S INTERTWINING OPERATOR , 1997 .

[13]  P. Forrester,et al.  The Calogero-Sutherland Model and Generalized Classical Polynomials , 1996, solv-int/9608004.

[14]  M. Rösler Generalized Hermite Polynomials and the Heat Equation for Dunkl Operators , 1998 .

[15]  Michael Voit,et al.  Markov Processes Related with Dunkl Operators , 1998 .

[16]  J. F. van Diejen,et al.  Calogero-Moser- Sutherland Models , 2000 .

[17]  Quantum Calogero-Moser models: integrability for all root systems , 2000, hep-th/0005277.

[18]  Yuan Xu,et al.  Orthogonal Polynomials of Several Variables: Subject index , 2001 .

[19]  Neil O'Connell,et al.  Eigenvalues of the Laguerre Process as Non-Colliding Squared Bessel Processes , 2001 .

[20]  A. Edelman,et al.  Matrix models for beta ensembles , 2002, math-ph/0206043.

[21]  Makoto Katori,et al.  Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems , 2004 .

[22]  Alan Edelman,et al.  Eigenvalues of Hermite and Laguerre ensembles: large beta asymptotics , 2005 .

[23]  Bruno Schapira The Heckman–Opdam Markov processes , 2006 .

[24]  M. Katori,et al.  Noncolliding Brownian Motion and Determinantal Processes , 2007, 0705.2460.

[25]  Infinite systems of noncolliding generalized meanders and Riemann–Liouville differintegrals , 2005, math/0506187.

[26]  C. Dunkl Reflection groups in analysis and applications , 2008 .

[27]  E. Youssfi,et al.  The Dunkl intertwining operator , 2009 .

[28]  P. Forrester Log-Gases and Random Matrices (LMS-34) , 2010 .

[29]  P. Graczyk,et al.  Multidimensional Yamada-Watanabe theorem and its applications to particle systems , 2011, 1108.1459.

[30]  M. Katori,et al.  Noncolliding Squared Bessel Processes , 2010, 1008.0144.

[31]  Seiji Miyashita,et al.  Interacting particles on the line and Dunkl intertwining operator of type A: application to the freezing regime , 2012, 1202.5052.

[32]  M. Katori Determinantal Process Starting from an Orthogonal Symmetry is a Pfaffian Process , 2011, 1104.1864.

[33]  M. Katori Elliptic determinantal process of type A , 2013, 1311.4146.