Finite element form of FDV for widely varying flowfields
暂无分享,去创建一个
G. A. Richardson | J. T. Cassibry | T. J. Chung | S. T. Wu | T. Chung | S. Wu | G. Richardson | J. Cassibry
[1] B. V. Leer,et al. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .
[2] Bernard F. Schutz,et al. A First Course in General Relativity , 2022 .
[3] John F. Hawley,et al. A Numerical Study of Nonspherical Black Hole Accretion , 1984 .
[4] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[5] Steven J. Plimpton,et al. Nonlinear magnetohydrodynamics simulation using high-order finite elements , 2004 .
[6] E. Müller,et al. Numerical Hydrodynamics in Special Relativity , 1999, Living reviews in relativity.
[7] C. Kelley. Iterative Methods for Linear and Nonlinear Equations , 1987 .
[8] W. F. Noh. Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .
[9] Luigi Martinelli,et al. A flux‐limited numerical method for solving the MHD equations to simulate propulsive plasma flows , 2002 .
[10] Michael Dumbser,et al. A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..
[11] P. Chris Fragile,et al. Nonoscillatory Central Difference and Artificial Viscosity Schemes for Relativistic Hydrodynamics , 2002, astro-ph/0206265.
[12] Chi-Wang Shu,et al. Efficient Implementation of Weighted ENO Schemes , 1995 .
[13] Steven J. Plimpton,et al. The NIMROD code: a new approach to numerical plasma physics , 1999 .
[14] G. A. Richardson,et al. Computational Relativistic Astrophysics Using the Flow Field-dependent Variation Theory , 2002 .
[15] G. Tóth,et al. Comparison of Some Flux Corrected Transport and Total Variation Diminishing Numerical Schemes for Hydrodynamic and Magnetohydrodynamic Problems , 1996 .
[16] P. Arminjon,et al. Central finite volume methods with constrained transport divergence treatment for ideal MHD , 2005 .
[17] J. Z. Zhu,et al. The finite element method , 1977 .
[18] K. T. Yoon,et al. Flowfield-dependent mixed explicit-implicit (FDMEI) methods for high and low speed and compressible and incompressible flows , 1998 .
[19] R. Teyssier,et al. A high order Godunov scheme with constrained transport and adaptive mesh refinement for astrophysical magnetohydrodynamics , 2006 .
[20] J. Centrella,et al. Planar numerical cosmology. II. The difference equations and numerical tests , 1984 .
[21] Dinshaw Balsara,et al. Second-Order-accurate Schemes for Magnetohydrodynamics with Divergence-free Reconstruction , 2003, astro-ph/0308249.
[22] R. Blandford,et al. Fluid dynamics of relativistic blast waves , 1976 .
[23] R. E. Peterkin,et al. Transport of Magnetic Flux in an Arbitrary Coordinate ALE Code , 1998 .
[24] Chaowei Hu,et al. No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .
[25] N. Bucciantini,et al. An efficient shock-capturing central-type scheme for multidimensional relativistic flows , 2002 .
[26] H. C. Yee,et al. A class of high resolution explicit and implicit shock-capturing methods , 1989 .
[27] Chi-Wang Shu,et al. The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .
[28] P. Londrillo,et al. An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics , 2002 .
[29] Gerald Warnecke,et al. A high-order kinetic flux-splitting method for the relativistic magnetohydrodynamics , 2005 .
[30] Dinshaw S. Balsara,et al. Total Variation Diminishing Scheme for Relativistic Magnetohydrodynamics , 2001 .
[31] G. Sod. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .
[32] K. Thompson,et al. The special relativistic shock tube , 1986, Journal of Fluid Mechanics.
[33] David L. Meier. Multidimensional Astrophysical Structural and Dynamical Analysis. I. Development of a Nonlinear Finite Element Approach , 1999 .
[34] S. Kruger,et al. NIMROD: A computational laboratory for studying nonlinear fusion magnetohydrodynamics , 2003 .
[35] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[36] Romain Teyssier,et al. Kinematic dynamos using constrained transport with high order Godunov schemes and adaptive mesh refinement , 2006, J. Comput. Phys..
[37] Francisco Canabal,et al. Unified CFD Methods Via Flowfield-Dependent Variation Theory , 1999 .
[38] E. Muller,et al. GENESIS: A High-Resolution Code for Three-dimensional Relativistic Hydrodynamics , 1999, astro-ph/9903352.
[39] T. J. Chung,et al. Transitions and interactions of inviscid/viscous, compressible/incompressible and laminar/turbulent flows , 1999 .
[40] José A. Font,et al. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity , 2008, Living reviews in relativity.
[41] Kun Xu,et al. A high-order gas-kinetic method for multidimensional ideal magnetohydrodynamics , 2000 .