Classification of Bifurcations of Quasi-Periodic Solutions Using Lyapunov Bundles

In continuous-time dynamical systems, a periodic orbit becomes a fixed point on a certain Poincare section. The eigenvalues of the Jacobian matrix at this fixed point determine the local stability ...

[1]  Nonnormally hyperbolic invariant curves for maps in R3 and doubling bifurcation , 1989 .

[2]  Tetsuro Endo,et al.  Multimode oscillations in a coupled oscillator system with fifth-power nonlinear characteristics , 1980 .

[3]  E. Dewan,et al.  Asynchronous quenching of the van der Pol oscillator , 1969 .

[4]  D. Ruelle Ergodic theory of differentiable dynamical systems , 1979 .

[5]  Hendrik Broer,et al.  Hopf saddle-node bifurcation for fixed points of 3D-diffeomorphisms: Analysis of a resonance ‘bubble’ , 2008 .

[6]  P. Polácik,et al.  The Principal Floquet Bundle and Exponential Separation for Linear Parabolic Equations , 2004 .

[7]  Hiroshi Kawakami,et al.  Bifurcation of periodic responses in forced dynamic nonlinear circuits: Computation of bifurcation values of the system parameters , 1984 .

[8]  Tetsuro Endo,et al.  Algorithms for Obtaining a saddle Torus between Two attractors , 2013, Int. J. Bifurc. Chaos.

[9]  E. Dewan,et al.  Harmonic entrainment of van der Pol oscillations: Phaselocking and asynchronous quenching , 1972 .

[10]  J. Yorke,et al.  Strange attractors that are not chaotic , 1984 .

[11]  K. Kaneko Doubling of Torus , 1983 .

[12]  H. Chaté,et al.  Characterizing dynamics with covariant Lyapunov vectors. , 2007, Physical review letters.

[13]  J. Crawford Introduction to bifurcation theory , 1991 .

[14]  Hendrik Broer,et al.  The Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: the Arnol'd resonance web , 2008 .