Classification of Bifurcations of Quasi-Periodic Solutions Using Lyapunov Bundles
暂无分享,去创建一个
Kazuyuki Aihara | Tetsuro Endo | Motomasa Komuro | Kyohei Kamiyama | K. Aihara | M. Komuro | T. Endo | K. Kamiyama
[1] Nonnormally hyperbolic invariant curves for maps in R3 and doubling bifurcation , 1989 .
[2] Tetsuro Endo,et al. Multimode oscillations in a coupled oscillator system with fifth-power nonlinear characteristics , 1980 .
[3] E. Dewan,et al. Asynchronous quenching of the van der Pol oscillator , 1969 .
[4] D. Ruelle. Ergodic theory of differentiable dynamical systems , 1979 .
[5] Hendrik Broer,et al. Hopf saddle-node bifurcation for fixed points of 3D-diffeomorphisms: Analysis of a resonance ‘bubble’ , 2008 .
[6] P. Polácik,et al. The Principal Floquet Bundle and Exponential Separation for Linear Parabolic Equations , 2004 .
[7] Hiroshi Kawakami,et al. Bifurcation of periodic responses in forced dynamic nonlinear circuits: Computation of bifurcation values of the system parameters , 1984 .
[8] Tetsuro Endo,et al. Algorithms for Obtaining a saddle Torus between Two attractors , 2013, Int. J. Bifurc. Chaos.
[9] E. Dewan,et al. Harmonic entrainment of van der Pol oscillations: Phaselocking and asynchronous quenching , 1972 .
[10] J. Yorke,et al. Strange attractors that are not chaotic , 1984 .
[11] K. Kaneko. Doubling of Torus , 1983 .
[12] H. Chaté,et al. Characterizing dynamics with covariant Lyapunov vectors. , 2007, Physical review letters.
[13] J. Crawford. Introduction to bifurcation theory , 1991 .
[14] Hendrik Broer,et al. The Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: the Arnol'd resonance web , 2008 .