Mahalanobis's Fractile Graphs: Some History and New Developments

Mahalanobis’s famous paper on Fractile Graphical Analysis introduced a plethora of new statistical concepts and techniques [see Mahalanobis (1960)]. The method was originally proposed to compare two regression functions. We discuss and re-interpret some of his work, highlighting his contributions and some of the difficulties encountered. We develop abootstrap based hypothesis test to compare the fractile regression curves based on their isotonized estimators. The proposed procedure does not depend on the choice of any tuning parameter and is computationally simple. Through an extensive simulation study, we illustrate the finite sample performance of our procedure. We also discuss three real data applications that illustrate the scope of the methodology.

[1]  I Hertz-Picciotto,et al.  Comparisons of Infant Mortality Using a Percentile‐Based Method of Standardization for Birthweight or Gestational Age , 1998, Epidemiology.

[2]  Miguel A. Delgado Testing the equality of nonparametric regression curves , 1992 .

[3]  P. Mahalanobis A Method of Fractile Graphical Analysis , 1960 .

[4]  Holger Dette,et al.  Nonparametric comparison of several regression functions: exact and asymptotic theory , 1998 .

[5]  Probal Chaudhuri,et al.  On Fractile Transformation of Covariates in Regression , 2012 .

[6]  Cécile Durot On the Lp-error of monotonicity constrained estimators , 2007 .

[7]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[8]  T R Holford,et al.  Spontaneous Abortion and Exposure to Electric Blankets and Heated Water Beds , 1998, Epidemiology.

[9]  H. D. Brunk,et al.  Statistical inference under order restrictions : the theory and application of isotonic regression , 1973 .

[10]  H. Müller,et al.  Local Polynomial Modeling and Its Applications , 1998 .

[11]  P. C. Mahalanobis FRACTILE GRAPHICAL ANALYSIS , 1965 .

[12]  P. Hall The Bootstrap and Edgeworth Expansion , 1992 .

[13]  J. Rice Bandwidth Choice for Nonparametric Regression , 1984 .

[14]  Holger Dette,et al.  Nonparametric comparison of regression curves: An empirical process approach , 2003 .

[15]  Wolfgang Härdle,et al.  Applied Nonparametric Regression , 1991 .

[16]  David,et al.  [Wiley Series in Probability and Statistics] Order Statistics (David/Order Statistics) || Basic Distribution Theory , 2003 .

[17]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[18]  K. B. Kulasekera,et al.  Smoothing Parameter Selection for Power Optimality in Testing of Regression Curves , 1997 .

[19]  Aurobindo Ghosh Fractile Regression and Its Applications , 2006 .

[20]  Gabriel Montes-Rojas,et al.  Nonparametric estimation of ATE and QTE: An application of fractile graphical analysis , 2011 .

[21]  E. Mammen Bootstrap and Wild Bootstrap for High Dimensional Linear Models , 1993 .

[22]  K. B. Kulasekera Comparison of Regression Curves Using Quasi-Residuals , 1995 .

[23]  B. Sen Indian Statistical Institute Estimation and Comparison of Fractile Graphs Using Kernel Smoothing Techniques , 2005 .

[24]  C. Witzgall,et al.  Projections onto order simplexes , 1984 .

[25]  Peter Hall,et al.  Bootstrap test for difference between means in nonparametric regression , 1990 .

[26]  C. J. Stone,et al.  Consistent Nonparametric Regression , 1977 .

[27]  W. Nordhaus Geography and macroeconomics: new data and new findings. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Subramanian Swamyi,et al.  NOTES ON FRACTILE GRAPHICAL ANALYSIS , 1963 .

[29]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[30]  J. Leeuw,et al.  Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods , 2009 .

[31]  C. Durot,et al.  On the $\mathbb{L}_p$-error of monotonicity constrained estimators , 2007, 0708.2219.

[32]  N. Sreenivasa Iyengar,et al.  Some Observations on Fractile Graphical Analysis , 1965 .

[33]  Peter Hall,et al.  A Short Prehistory of the Bootstrap , 2003 .

[34]  F. T. Wright,et al.  Order restricted statistical inference , 1988 .